
Synthesis from Incompatible Specifications∗

Pavol Černý
IST Austria

Sivakanth Gopi
IIT Bombay

Thomas A. Henzinger
IST Austria

Arjun Radhakrishna
IST Austria

Nishant Totla
IIT Bombay

ABSTRACT
Systems are often specified using multiple requirements on
their behavior. In practice, these requirements can be con-
tradictory. The classical approach to specification, verifi-
cation, and synthesis demands more detailed specifications
that resolve any contradictions in the requirements. These
detailed specifications are usually large, cumbersome, and
hard to maintain or modify. In contrast, quantitative frame-
works allow the formalization of the intuitive idea that what
is desired is an implementation that comes “closest” to sat-
isfying the mutually incompatible requirements, according
to a measure of fit that can be defined by the require-
ments engineer. One flexible framework for quantifying how
“well” an implementation satisfies a specification is offered
by simulation distances that are parameterized by an error
model. We introduce this framework, study its properties,
and provide an algorithmic solution for the following quan-
titative synthesis question: given two (or more) behavioral
requirements specified by possibly incompatible finite-state
machines, and an error model, find the finite-state imple-
mentation that minimizes the maximal simulation distance
to the given requirements. Furthermore, we generalize the
framework to handle infinite alphabets (for example, real-
valued domains). We also demonstrate how quantitative
specifications based on simulation distances might lead to
smaller and easier to modify specifications. Finally, we il-
lustrate our approach using case studies on error correcting
codes and scheduler synthesis.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming

∗This research was supported in part by the European
Research Council (ERC) Advanced Investigator Grant
QUAREM and by the Austrian Science Fund (FWF) project
S11402-N23.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’12, October 7-12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1425-1/12/09 ...$15.00.

General Terms
Theory, Verification

Keywords
synthesis, incompatible specifications

1. INTRODUCTION
A major problem for the wider adoption of techniques for

the formal verification and synthesis of systems is the dif-
ficulty of writing quality specifications. Quantitative spec-
ifications have the potential to simplify the task of the de-
signer, by enabling her to capture her intent better, and
more simply. In this paper, we focus on how quantitative
specification and reasoning can be useful in cases when spec-
ifications are mutually incompatible. In practice, specifica-
tions of systems are often not monolithic. They are com-
posed of parts that express different design requirements,
possibly coming from different sources. Such high-level re-
quirements can be therefore often contradictory (see, for in-
stance, [16, 2, 14] which provide methods for requirements
analysis). Using the classic boolean approach, the solu-
tion would be to resolve conflicts by writing more detailed
specifications that cover all possible cases of contradictions,
and say how to resolve them. However, such specifications
may become too large, and more importantly, the different
requirements become entangled in the specification. The
specifications are then much more difficult to maintain than
the original requirements, as it is hard to modify one re-
quirement without rewriting the rest of the specification. In
contrast, quantitative frameworks allow the formalization of
the intuitive idea that what is desired is an implementation
that comes “closest” to satisfying the requirements. More
technically, we consider two questions: first, the (rigorously
defined) distances from the implementation to (boolean) re-
quirements are within given bounds, and second, the maxi-
mal distance to a requirement is minimized.

Furthermore, quantitative reasoning about systems is
gaining importance with the spread of embedded systems
with strict requirements on resource consumption and time-
liness of response. The quantitative approach in this paper
is fully compatible with quantitative resource (e.g. memory,
energy) consumption requirements: the framework allows
us to consider multiple specifications that model resource
consumption, and it allows us to express the relative impor-
tance of resources. We can then ask the same two questions
as above: first, we would like an implementation such that
it consumes resources within given bounds; or, second, an

53

implementation such that its maximal total consumption of
a resource is minimized.

Synthesis from specifications [18, 17, 9] has been stud-
ied extensively as a technique to improve designer and pro-
grammer productivity. If designers are forced to write de-
tailed low-level specifications to reconcile contradictory re-
quirements, it decreases the usefulness of synthesis. First,
it requires more effort from designers, requiring considera-
tion of how a certain task will be performed, as opposed to
what task should be performed. Second, the space of so-
lutions to the synthesis problem is reduced, with possibly
good implementations being ruled out. We therefore pro-
pose quantitative synthesis as a solution to the problem of
synthesis from incompatible specifications.
Motivating example. Consider a system that grants ex-
clusive access to a resource to two processes which periodi-
cally seek access to it. The specification of the system con-
sists of two parts: the first (resp. second) part R1 (resp. R2)
states that a request for the resource from Process 1 (Pro-
cess 2) should be satisfied with a grant in the same step.
The input alphabet I consists of symbols r1, r2, r1r2 and
nr representing that requests from either Process 1, Process
2, both, or neither, respectively, coming in the current step.
The output alphabet O consists of symbols g1 (g2) repre-
senting granting the resource to Process 1 (Process 2), and
a special “don’t care” symbol ∗. The two parts of the speci-
fication are shown in Figures 1a and 1b. The specifications
are incompatible, because on input r1r2 the specification
S1 allows only g1, whereas specification S2 allows only g2.
Classically, the designer would have to manually resolve the
conflict by, for example, constructing a specification that
grants to Process 1 whenever both processes request in the
same step (requirement R3). However, the designer might
not want to resolve the conflict at the specification level, but
instead might want to state that she wants an implementa-
tion that comes close to satisfying the two mutually incom-
patible specifications, according to a measure of correctness.
We provide a rigorous way for defining such measures.
Measuring correctness of an implementation. We
model both systems and specifications as finite-state ma-
chines. For defining distances between systems (or between
systems and specifications), we build on the simulation dis-
tances framework of [6]. Simulation distances generalize the
simulation relation, which is a standard correctness condi-
tion, to the quantitative setting by measuring how“close”an
implementation comes to satisfying a specification. In the
classic boolean case, simulation can be seen as a 2-player
game between an implementation I and a specification S,
where Player 1 chooses moves (transitions) from the imple-
mentation and Player 2 tries to match each move in the
specification. In order to generalize this definition to the
quantitative setting, we allow the players to make errors
(intuitively, choose non-existent transitions), but they pay
a certain price for each such choice. The cost of a trace is
given by an objective function. We focus on the limit av-
erage objective (and thus long-term behavior of systems).
The goal of Player 1 (resp., Player 2) is to maximize (resp.
minimize) the cost. The best value Player 1 can achieve is
then taken as the cost of an implementation with respect
to the specification. In this paper, we extend the simula-
tion distances of [6] in two ways: first we consider finite-
state machines with both inputs and outputs, and second,
we allow specifying simulation distances using error mod-

r1/g1
r1r2/g1
nr/ng
r2/∗

(a) S1

r2/g2
r1r2/g2
nr/ng
r1/∗

(b) S2

r1/g1
r1r2/g1
nr/ng
r2/g2

(c) I1

/g1/g2

(d) I2

r1/g1
r2/g2
nr/ng

r1r2/g1
nr/g2
r2/g2

r1r2/g2

nr/g1
r2/g1

r1/g2
r1r2/g2

r1/g1
r1r2/g1

(e) I3

Figure 1: Example 1

els. The error models are finite-state machines that specify
what other additional options the simulating player (Player
2) has. Intuitively, the error models allow specifying how
the simulating player can “cheat” in the simulation game.
Synthesis from incompatible specifications. The main
technical problem we concentrate on in this paper is the
problem of synthesis from incompatible specifications. The
input to the synthesis problem consists of a set of (two or
more) mutually incompatible specifications given by finite-
state open reactive systems, and a simulation distance (given
by an error model). The output should be an implementa-
tion, given by a deterministic open reactive system, that
minimizes the maximal simulation distance to the given
specifications.
Motivating example (continued). Let us consider an
error model that, intuitively, (i) assigns a cost 1 if the im-
plementation does not grant a request that has arrived in
the current step, and assigns the same cost for every step
before the implementation grants the request, and (ii) as-
signs a cost 1 if the implementation grants a request that is
not required in the current step. Let us now consider the
three different implementations in Figures 1c, 1d, and 1e,
and their distances to the specifications S1 and S2. The im-
plementation I1 always prefers the request r1 when the two
requests arrive at the same time. The implementation I1

satisfies the specification S1, but on the input (r1r2)ω, I1

makes a mistake at every step w.r.t. S2. The implementa-
tion I1 thus has distance 0 from S1, and distance 1 from S2.
The implementation I2 handles the sequence (r1r2)ω grace-
fully by alternation (note that in Figure 1d matches any
input). However, on the input sequence (nr)ω, I2 grants at
every step, even though it should not grant at all. It thus
has a distance of 1 to both S1 and S2. The implementation
I3 also alternates grants in cases when the requests arrive
at the same step, but does not grant unnecessarily. Its dis-
tance to both specifications would be 1

2
. This is because

the worst-case input for this implementation is the sequence
(r1r2)ω and on this input sequence, it makes a mistake in
every other step, w.r.t. S1 as well as S2.

The quantitative approach can be compared to the classi-

54

cal boolean approach to illustrate how it leads to specifica-
tions that are easier to modify:
• Consider an alternate requirement R′1 which says that

every request by Process 1 should be granted in the
next step (instead of the same step). In the boolean
case, replacing requirement R1 by R′1 also involves
changing the requirement R3 which resolves the con-
flict between R1 and R2. Requirement R3 needs to be
changed to R′3 which says that given that request r1

happened in the previous step and r2 happened in the
current step, the output must be g1 in the current step.
However, in the quantitative case, no changes need to
be done other than replacing R1 with R′1.
• Similarly, we can consider other ways of resolving the

conflict between requirements R1 and R2, instead of
using R3 which prioritizes Process 1 over Process 2.
We could have the requirement that we are equally tol-
erant to missed grants in each process (say requirement
R′3) or that we tolerate twice as many missed grants
in Process 1 than in Process 2, just by modifying the
penalties in the error models. In the boolean case, the
requirement R3 is easily expressible, but the require-
ment R′3 is very hard to state without adding addi-
tional constraints to the specification. In the quan-
titative case, we can simply switch between R3 and
and R′3 just by changing the relative penalties for not
granting r1 or r2.
• To illustrate how our framework can model resource

consumption, we consider a system that sends mes-
sages over a network, as governed by a correcteness
specification. It costs a certain amount (in dollars)
to send a kB of data, so it might be useful to com-
press data first. However, compression uses energy (in
Joules). In our framework, we could add two boolean
requirements saying that (a) data should not be sent
on the network, and (b) compression should not be
used. Then we can relax the requirement, by giving
error models that have costs for sending data and us-
ing compression. In this way, the framework allows to
synthesize a system where e.g. both total energy costs
and total network costs are within certain bounds. For
further illustration of resource consumption modeling,
we refer the reader to our case study on forward error
correction codes, where the number of bits sent is the
resource tracked.

Overview of results The main result of this paper is an
ε-optimal construction for the synthesis from incompatible
specifications problem. We first consider the decision ver-
sion of the problem: given k possibly mutually incompatible
specifications, and a maximum distance to each specifica-
tion, the problem is to decide whether there exists an imple-
mentation that satisfies these constraints. We show that the
decision problem is coNP-complete (for a fixed k). The re-
sult is obtained by reduction to 2-player games with multiple
limit average objectives [7]. We then present a construction
of an ε-optimal strategy for the problem of synthesis for in-
compatible specifications. Furthermore, for the case of two
specifications, and for a specific error model (already consid-
ered in [6]), we show that the result of our optimal synthesis
procedure is always better (in a precise sense) than the result
of classical synthesis from just one of the specifications.

Moreover, we extend the framework of simulation dis-
tances [6] to open reactive systems (with both inputs and

outputs), and introduce parametric stateful error models.
We prove that simulation distances define a directed met-
ric (i.e., the distance is reflexive and the triangle inequality
holds) in this generalized setting.

We also study an extension of the framework to distances
for automata on infinite metric alphabets, to model for ex-
ample controlling a real-valued output. We present an algo-
rithm (simpler than in the finite-alphabet setting) for solving
the problem of synthesis from incompatible specifications in
this more flexible setting. We then study the case when the
controller can set the output only to a finite number of val-
ues from the infinite alphabet, and in this case we give an
algorithm as well as a more efficient heuristic based on a
projection theorem.

Finally, we demonstrate how our methods can enable sim-
pler specifications, while allowing the synthesis of desirable
solutions, using two case studies: on synthesis of custom
forward error correction codes and on scheduler synthesis.
Related work. The fact that in practice requirements
on systems might be inconsistent was recognized in the
literature, and several approaches for requirement analy-
sis [16, 2, 14] and requirement debugging [15] were pro-
posed. The problem of an inconsistent specification was
approached in [8] by synthesizing additional requirements
on the environment so that unrealizability in the specifi-
cation is avoided. It was also observed that quantitative
measures can lead to simpler specifications [3]. There have
been several attempts to give a mathematical semantics to
reactive processes based on quantitative metrics rather than
boolean preorders [19, 10]. In particular for probabilistic
processes, it is natural to generalize bisimulation relations to
bisimulation metrics [11], and similar generalizations can be
pursued if quantities enter through continuous variables [4].
In contrast, we consider distances between purely discrete
(non-probabilistic, untimed) systems.

Synthesis from inconsistent specifications was considered
in [13, 12]. Here the conflicts between various components
of the specification are resolved by considering priorities for
different components, in contrast to our approach of using
quantitative measures of correctness. However, it is not pos-
sible to express requirement such as R′3 from the motivating
example using priorities. Synthesis with respect to quantita-
tive measures was considered in [3, 5], but only for consistent
specifications, and not for simulation distances.

2. DISTANCES ON SYSTEMS
Alternating Transition Systems. An alternating transi-
tion system (ATS) 〈S,Σ, E, s0, (S1, S2)〉 consists of a finite
set of states S, a finite alphabet Σ, an initial state s0, a
transition relation E ⊆ S × Σ × S and a partition (S1, S2)
of S into Player 1 and Player 2 states. We require that
for every state s ∈ S, there exists a transition from s, i.e.,
∀s ∈ S : ∃σ ∈ Σ, s′ ∈ S : (s, σ, s′) ∈ E. A run in a transition
system is an infinite path ρ = ρ0σ0ρ1 . . . where ρ0 = s0 and
∀i ≥ 0 : (ρi, σi, ρi+1) ∈ E. If the set S1 is empty in an ATS,
we call it a transition system and denote it by 〈S,Σ, E, s0〉.
Reactive Systems. An open reactive system is a restriction
of an ATS where: (i) Alphabet Σ is the disjoint union of
inputs I and outputs O; (ii) Transition relation is strictly
alternating on S1 and S2, and inputs and outputs, i.e., E ⊆
(S1 × I × S2) ∪ (S2 × O × S1); (iii) Transition relation is
deterministic in inputs, i.e., (s, σ, s′) ∈ E ∧ (s, σ, s′′) ∈ E ∧

55

σ ∈ I =⇒ s′ = s′′; and (iv) Transition relation is input
enabled, i.e., ∀s ∈ S1, σ ∈ I : ∃s′ : (s, σ, s′) ∈ E.

In a reactive system, the computation proceeds with the
environment (Player 1) choosing an input symbol from ev-
ery state in S1 and the system (Player 2) choosing an output
symbol from every state in S2. Each run is called a behavior
of the system. We say a reactive system is an implementa-
tion if for all s ∈ S2, there is exactly one transition leading
out of s.
2-player Games. A 2-player game is an ATS (called game
graph) along with an objective (defined below). In a game,
a token is placed on the initial state; and Player i chooses
the successor whenever the token is on a state in Si. The
set of all runs is denoted by Ω.
Strategies. A strategy for Player i in a game is a recipe
that tells the player how to choose the successors in a game.
Formally, a Player i strategy πi : (S × Σ)∗ · Si → Σ × S
is a function such that for each w · s ∈ (S × Σ)∗ · Si and
πi(w · s) = (σ, s′), we have (s, σ, s′) ∈ E. Each w is called a
history. The sets of all Player 1 and Player 2 strategies are
denoted by Π1 and Π2, respectively. A play ρ = ρ0σ0ρ1σ1 . . .
conforms to a Player j strategy if ∀i ≥ 0 : ρi ∈ Sj =⇒
(ρi+1, σi) = π1(ρ0σ0 . . . ρi). The outcome of strategies π1

and π2 is the unique path out(π1, π2) that conforms to both
π1 and π2.

We use two restrictions of strategies. Strategy πi is:
• Memoryless if the output of the strategy function de-

pends only upon the last state in the history. More for-
mally, a strategy is memoryless if ∀w1, w2 ∈ (S × Σ)∗

and all s ∈ Si, we have πi(w1 · s) = πi(w2 · s);
• Finite-memory if the output depends only upon the

current state of a finite memory and the last state in
the history. The memory is updated using a memory
update function every time a player makes a move.
More formally, a strategy is finite-memory, if there ex-
ists a finite memory set M , an initial memory state m0,
a memory update function πMi : M×(S×Σ)∗ ·S →M
and a output function πOi : Si×M → Σ×S such that:

– πi(w·s) = πOi ((s, πMi (m0, w))) for all w ∈ (S×Σ)∗

and s ∈ Si; and
– πMi (m, ρ0σ0 . . . ρiσiρi+1) =
πMi (πMi (m, ρ0σ0 . . . ρi), ρiσiρi+1).

The set of Player i finite-memory and memoryless strategies
is denoted by ΠFM

i and ΠML
i respectively.

Objectives. A boolean objective is a function Φ : Ω → {0, 1}
and quantitative objective is a function Ψ : Ω → R and the
goal of Player 1 in each case is to choose a strategy such
that no matter what strategy Player 2 chooses, the value of
the outcome is maximized.
Optimal strategies and Values. For a boolean objective Φ,
a strategy π1 (π2) is winning for Player 1 (2) if all plays
conforming to it map to 1 (0). For a quantitative objec-
tive Ψ, the value of a Player 1 strategy π1 is V al(π1) =
infπ2∈Π2 Ψ(out(π1, π2)), and of a Player 2 strategy π2 is
V al(π2) = supπ1∈Π1

Ψ(out(π1, π2)). The value of the game
is V al(Ψ) = supπ1∈Π1

V al(π1). A strategy πi is optimal if
V al(πi) is equal to value of the game.

If the above definitions are restricted to finite-memory
strategies instead of arbitrary strategies, we get the notions
of finite-memory values of strategies and games. In this pa-
per, by default, value is taken to mean finite-memory value.
Reachability and LimAvg objectives. A boolean
reachability objective Reach(T) for T ⊆ S has

Reach(T)(ρ0σ0ρ1σ1 . . .) = 1 if and only if ∃i : ρi ∈ T ,
i.e., Player 1 tries to reach the target states T while
Player 2 tries to avoid them.

For any ATS, a weight function ν maps the transition set
E to Nk. Given ν:
• Limit-average objective LimAvgν : Ω → R for
k = 1 has LimAvg(ρ0σ0ρ1 . . .) = lim infn→∞

1
n
·∑n

i=0 ν((ρi, σi, ρi+1)).
• Multi-limit-average objective MLimAvgν : Ω → R

maps plays to the maximum LimAvg value of pro-
jections of ν to each component of the tuple.
• Multi-limit-average threshold objective MLimAvgv

(v ∈ Rk) is a boolean objective where a path is mapped
to 1 if and only if there is an i, the LimAvg of the ith

component of ν is more than the ith component of v.
Note that we use the dual of the standard definition of
MLimAvgv used in [7], i.e., we use existential quantification
over i rather than universal. However, all results from [7]
can be transferred by switching Player 1 and Player 2.

2.1 Quantitative Simulation Games
The simulation preorder is a widely used relation to com-

pare two transition systems and was extended in [1] to al-
ternating transition systems. The simulation preorder can
be computed by solving a 2-player game.
Simulation and Simulation Games. Let A =
〈S,Σ, E, s0, (S1, S2)〉 and A′ = 〈S′,Σ, E′, s′0, (S′1, S′2)〉 be
two reactive systems. The system A′ simulates the system
A if there exists a relation R ⊆ S × S′ such that:
• (s0, s

′
0) ∈ R;

• (s, s′) ∈ R =⇒ (s ∈ S1 ↔ s′ ∈ S′1);
• ∀s, t ∈ S, s′ ∈ S′ : (s, s′) ∈ R ∧ (s, σ, t) ∈ E ∧ s ∈
S2 =⇒ (∃t′ : (s′, σ, t′) ∈ E′ ∧ (t, t′) ∈ R; and
• ∀s ∈ S, s′, t′ ∈ S′ : (s, s′) ∈ R ∧ (s′, σ, t′) ∈ E′ ∧ s′ ∈
S′1 =⇒ (∃t : (s, σ, t) ∈ E ∧ (t, t′) ∈ R.

We can construct a game GA,A
′

with a reachability objec-
tive such that A′ simulates A if and only if Player 2 has

a winning strategy. The game graph GA,A
′

consists of
the Player 1 states S1 × {#} × S′1

⋃
S2 × {#} × S′2 and

Player 2 states S1 × I × S′2
⋃
S1 × O × S′2

⋃
{serr}, the al-

phabet Σ, and the initial state (s0,#, s
′
0). The transition

set consists of the following transitions:
• ((s,#, s′), σ, (t, σ, s′)) where (s, σ, t) ∈ E ∧ s ∈ S2;
• ((s,#, s′), σ, (s, σ, t′)) where (s′, σ, t′) ∈ E′ ∧ s ∈ S1;
• ((s, σ, s′), σ, (s,#, t′)) where (s′, σ, t′) ∈ E′ ∧ σ ∈ O;
• ((s, σ, s′), σ, (t,#, s′)) where (s, σ, t) ∈ E ∧ σ ∈ I;
• (s,#, serr) for all Player 2 states s.

The objective for Player 1 is Reach({serr}).
Intuitively, in each step of the simulation game, ei-

ther Player 1 chooses an input transition of A′ and
Player 2 matches it with an input transition of A, or
Player 1 chooses an output transition of system A and
Player 2 matches it with an output transition of A′. If
Player 2 is not able to match a transition, serr is visited
and Player 2 loses the game. It is straightforward to show
that A′ simulates A if and only if Player 1 has a winning
strategy.
Simulation Distances. In quantitative simulation
games [6], Player 2 can simulate an A transition by an A′
transition with a mismatching label. However, such mis-
matches have a cost and Player 2 tries to minimize the
LimAvg of costs. When simulation holds, there are no mis-
matches and the value of the game is 0. Here, we present a

56

a/a(0)
b/b(0)
a/b(1)
b/a(1)

(a) Standard
Model

g/g(0)
g̃/g̃(0)

g̃/g(1)

g̃/ ∗ (1)

g/ ∗ (0)

(b) Delayed Response

g̃/g(1)

g̃/g̃(0)
g/g(0)

g/g̃(1)

* (1)

(c) No Spurious Response

Figure 2: Sample error models

generalization of quantitative simulation games for reactive
systems with richer error models.
Error Models. The modification schemes used in [6] to model
the permitted errors during the simulation game do not
cover some natural error schemes. For example, the criteria
used for request-grant systems in Section 1 is not express-
ible as a modification scheme from [6]. Hence, we define
more general error models. An error model over an alpha-
bet Σ = I ∪O is a deterministic weighted transition system
over O×O. Intuitively, a transition on label (σ1, σ2) (hence-
forth denoted as σ1/σ2) represents that a transition on label
σ1 in the simulated system can be simulated by a transition
on label σ2 in the simulating system with the accompanying
cost. We also require that each word over symbols of the
form σ/σ is assigned cost 0 to ensure that correct simula-
tions have a cost 0.

Given an error model M = 〈Se,O × O, Ee, se0〉 with
weight function ν and an ATS A = 〈S,Σ, E, s0, (S1, S2)〉,
the modified system is the weighted transition system AM =
〈S × Se,Σ, EM , (s0, s

e
0), (SM1 , SM2)〉 with weight function νe

where:
• ((s, se), σ1, (t, t

e)) ∈ EM ⇔ s ∈ S2, (s, σ2, t) ∈ E ∧
(se, (σ1, σ2), te) ∈ Ee,
• ((s, se), σ1, (t, s

e)) ∈ EM ⇔ s ∈ S1∧(s, σ1, t) ∈ E; and
• νe(((s, se), σ1, (t, t

e))) = ν((se, (σ1, σ2), te)).
The modified transition system includes erroneous behaviors
along with their costs. Note that we do not consider errors
in the inputs as all our reactive systems are input enabled.
We present a few natural error models here.
• Standard Model. (Figure 2a) Every replacement can

occur during simulation with a constant cost and can
be used to model errors like bit-flips. This model was
defined and used in [6].
• Delayed Response Model. (Figure 2b) This model mea-

sures the timeliness of responses (g). Here, when the
implementation outputs g̃ when a grant g is expected,
all transitions have a penalty until the missing grant g
is seen.
• No Spurious Response Model. (Figure 2c) This model

is meant to ensure that no spurious grants are pro-
duced. If an implementation produces a grant not re-
quired by the specification, all subsequent transitions
get a penalty.
• Qualitative Model. (Figure 5) This model recovers the

d = 2, s = 1 S1 S2

I1 0 2
I2 1 1
I3 1 1

d = 1, s = 10 S1 S2

I1 0 1
I2 10 10
I3

1
2

1
2

Table 1: Simulation distances for Example 2.1

boolean simulation games. The distance is 0 if and
only if the simulation relation holds.
• Delayed-vs-Spurious Responses Model. (Figure 3) We

formalize the informal preference conditions from the
discussion of the motivating example in Section 1 in
the this error model. Delayed and spurious grants get
penalties of d and s, respectively.

Of the above models, the standard model and the qualitative
model can be expressed as modification schemes from [6],
whereas the delayed response, the spurious response model,
and the Delayed-vs-Spurious response model cannot be cast
as modification schemes.
Quantitative Simulation Games. Given a modified specifi-

cation system A′M and an implementation system A, the

quantitative simulation game QA,A
′

M is a game with the

game-graph of GA,A
′
M , and a weight function that maps:

• Each Player 1 transition to 0, and
• Each Player 2 transition to 4 times weight of the corre-

sponding transition in A′M (The constant 4 is for nor-
malization). The objective of the game for Player 1 is
to maximize the LimAvg of weights.

In a quantitative simulation game, the implementation
system is simulated by the modified specification system and
for each simulation error, penalty is decided by the error

model. The value of the quantitative simulation gameQA,A
′

M

is the simulation distance (denote as dM (A,A′)).

Example 2.1. Consider the specifications and implemen-
tations from the motivating example in Section 1 (Figure 1),
and the Delayed-vs-Spurious Response Model in Figure 3.

By varying the penalties, we obtain different distances.
The simulation distances of implementations I1, I2 and I3

to specifications S1 and S2 (Figure 1) are summarized in
Table 1 for two valuations of d and s. For example, when
d = 2 and s = 1, I2 and I3 have equal distances to S1 and
S2. However, when d = 1 and s = 10, the distances of I3

are lower than that of I2.
Note that in the example of Figure 1, the specifications S1

and S2 specify what happens if the two requests r1 and r2

come at the same time. If we wanted to change this example
and make the specifications completely independent (i.e. S1

only mentions r1 and S2 only mentions r2), we would need
to modify our notion of product construction to allow two
input symbols at the same time. Our results would still hold
for this modified product construction.

2.2 Properties of Simulation Distances
Directed metric requires reflexivity and triangle inequality

to hold. These are perhaps the minimal requirements that
allow us to match the intuitive notion of distance. In [6],
it is shown that simulation distances with restricted error
models are directed metrics.

For our general error models, reflexivity follows from def-
inition. However, the triangle inequality does not hold for

57

all models. We provide a necessary and sufficient condition
for the triangle inequality to hold.

An error model M is transitive if the following holds:
For every triple of infinite lasso (i.e., ultimately periodic)
words generated by the error model M of the form α =
a0
b0

a1
b1
. . ., β = b0

c0

b1
c1
. . . and γ = a0

c0

a1
c1
. . ., the LimAvg(α) +

LimAvg(β) ≥ LimAvg(γ).

Lemma 2.2. An error model M is transitive if and only
if ∀S1,S2,S3 : dM (S1,S3) ≤ dM (S1,S2) + dM (S2,S3).

The proof of the triangle inequality for transi-
tive error models can be derived from the proof
of Theorem 1 in [6] with slight modifications.
For a non-transitive error model, the three systems whose
only behavior outputs the lasso-words which witness the
non-transitivity violate the triangle inequality. All the error
models from Figures 2 and 3 are transitive.

Theorem 2.3. The simulation distance dM is a directed
metric if and only if the error model M is transitive.

g/g, g̃/g̃(0)
g/g̃(s)

g̃/g(d)

g̃/g(d)
g̃/g̃(d)

g/g(0)
g/g̃(0)

Figure 3: Delayed-vs-
spurious response error
model

The transitiveness of an er-
ror model can be checked in
polynomial time.

Proposition 2.4. It is de-
cidable in polynomial time
whether an error model M =
〈Se,O × O, Ee, se0〉 is transi-
tive.

The result follows by con-
structing the product M×M×
M where the transitions with

labels σ1
σ2

, σ2
σ3

and σ1
σ3

and weights w1, w2 and w3 are re-
placed with a transition of weight w1 +w2−w3. The model
M is transitive iff there is no negative cycle in this graph
(checkable in polynomial time).

3. THE INCOMPATIBLE SPECIFICA-
TIONS PROBLEM

Specifications Si and error models Mi for 1 ≤ i ≤ k are
said to be incompatible if ¬∃I :

∧
i dMi(I,Si) = 0. Note that

our definition may judge specifications compatible, even if
there is no common implementation which is simulated clas-
sically by each specification. This happens if there exists an
implementation with the distance 0 to each of the specifica-
tions, which is possible if the specifications share long-term
behavior, but differ in the short-term initial behavior.

We formalize the synthesis from incompatible specifica-
tions problem as follows.
Incompatible Specifications Decision Problem. Given Si
and Mi for 1 ≤ i ≤ k as above, and a threshold vector
v = 〈v1, v2, . . . vk〉 ∈ Qk, incompatible specifications deci-
sion problem asks if ∃I : ∀1 ≤ i ≤ k : dMi(I,Si) ≤ vi.
Incompatible Specifications Optimization Problem. Given
specifications Si and error models Mi for 1 ≤ i ≤ k and
a bound ε > 0, the incompatible specifications optimization
problem is to find an implementation I∗ such that ∀I :
maxi∈{1,2,...k} dMi(I∗,Si) ≤ maxi∈{1,2,...k} dMi(I,Si) + ε.
We call such an implementation I∗ an ε-optimal implemen-
tation.

I state
(π2 mem.)

s s s′ s′′ s′′

G∗ state
comp. i

si s′i s′i s′i s′′i

σi σo

σi σo

σi σo

Figure 4: Working of π2: Solid edges are transitions in G∗
and dashed edges are transitions in dMi(I,Si)

Theorem 3.1. The incompatible specifications decision
problem is coNP-complete for a fixed k.

Proof. First, we prove that the incompatible specifica-
tions decision problem is in coNP. We reduce the problem
to the decision problem in 2-player games with MLimAvg
objectives.

Given a specification Si and an error model Mi for 1 ≤
i ≤ k, consider the following game graph G∗ with:
• Player 1 states S1 = S1

1 × . . . × Sk1 where Si1 are the
Player 1 states of SMi

i ;
• Player 2 states S2 = S1

2 × . . . × Sk2 where Si2 are the
Player 2 states of SMi

i ;
• A transition from state (s1, s2, . . . , sk) to

(s′1, s
′
2, . . . , s

′
k) on symbol σ if and only if each

of (si, σ, s
′
i) ∈ Ei where Ei is the transition set of

SMi
i ; and

• Weight function ν with the ith component being
νi((s1, s2, . . . , sk), σ, (s′1, s

′
2, . . . , s

′
k)) = 2 ∗ ν((si, σ, s

′
i))

for 1 ≤ i ≤ k.
Intuitively, Player 1 chooses the inputs and

Player 2 chooses output transitions from SMi
i . We

prove that a witness implementation exists if and only if
there exists a finite memory Player 2 strategy in G∗ for the
MLimAvg objective.
(a) For any implementation I, consider the games QI,SiMi

and the optimal Player 2 strategy πi2 in each. By standard
results on LimAvg games, we have that each πi2 is memo-
ryless. From these strategies, we construct a finite-memory
Player 2 strategy π2 in G∗ with the state space of I as the
memory. The memory update function of π2 mimics the
transition relation of I. Let s be the current state of π2

memory and let (s1, s2, . . . , sk) be the current state in G∗.
By construction, s is Player 1 state in I iff (s1, . . . , sk) is
Player 1 state in G∗.
• If (s1, s2, . . . , sk) is a Player 1 state, Player 1 chooses

an input symbol σi ∈ I and updates the G∗ state. The
memory of π2 is updated to s′ which is the unique
successor of s on σi.
• Next, if the current state (s′1, s

′
2, . . . , s

′
k) is a

Player 2 state, the memory of π2 is updated to the
unique successor s′′ of s′ in I (Player 2 states have
unique successors in implementations). If (s′, σ, s′′) is
the corresponding I transition, the chosen G∗ state is
(s′′1 , s

′′
2 , . . . , s

′′
k) where each s′′i = πi2((s′′, σ, s′i)).

The construction of π2 is explained in Figure 4.
For every path ρ conforming to π2, we can construct a

path ρi in QI,SiMi
conforming to πi2 from the memory of π2

and the projection of ρ to ith component (See Figure 4).
Furthermore, the weights of the ith component of ρ have the
same LimAvg as the weights of ρi. Therefore, the LimAvg
value of the ith component of ρ is bound by dMi(I,Si). This

58

shows that the MLimAvg value of π2, V al(π2) is at most
the maximum of dMi(I,Si).
(b) For every finite-memory strategy π2 of Player 2 in G∗,
we can construct an implementation I such that V al(π2) ≥
maxi∈{1,2,...k} dMi(I,Si), by considering the product of G∗
and the memory of π2 and by removing all transitions orig-
inating from Player 2 states which are not chosen by π2.

From the results of [7], we have that solving MLimAvg
games for the threshold {0}k for finite memory strategies
is coNP-complete. However, we can reduce the problem
of solving MLimAvg games for a threshold v ∈ Qk to a
problem with threshold {0}k by subtracting v from each of
the edge weights. This reduction is obviously polynomial.
Therefore, the inconsistent specifications decision problem
can be solved in coNP time in the size of G∗, which in turn
is polynomial in the size of the input for fixed k. To show
the coNP hardness, we can use a modification of the proof
of coNP hardness of MLimAvg games by reduction from
the complement of 3-SAT.

Now, we can find an ε-optimal implementation for the
optimization problem by doing a binary search on the space
of thresholds.

Corollary 3.2. The incompatible specifications opti-
mization problem can be solved in NEXP time for a fixed
k, ε and W , where W is the absolute value of the maximum
cost in the error models.

Proof. Without loss of generality, let ε = 1
q

for q ∈ N.
As the simulation distances are between 0 and W , we do
a binary search on vectors of form {t}k to find {N/Wq}k,
the highest threshold for which an implementation exists.
Since, the accuracy required is ε, the number of search
steps is O(log(W/ε)) = O(log(Wq)). We find an imple-
mentation (equivalently, a Player 2 finite memory strat-
egy) with a value of at least this threshold. We reduce
the problem to an equivalent threshold problem with in-
teger weights and threshold {0}k by multiplying weights by
Wq and subtracting {N}k. From [7], we have that mem-

ory of size O(|G∗|2 · (|G∗|qW)k) is sufficient. For one such
finite-memory strategy, checking whether it is sufficient can
be done in polynomial time. Therefore, by guessing a strat-
egy and checking for sufficiency, we have an NEXP time
algorithm.

Example 3.3. For the specifications and error models
from Example 2.1 (Section 2.1), we compute ε-optimal im-
plementations for different values of d and s. In this case,
we obtain optimal implementations by taking a small enough
ε. We have that I2 is one of the optimal implementations
for the case of d = 2 and s = 1. The implementation I3 and
its dual (i.e., r1, g1 interchanged with r2, g2) are optimal
for the case when d = 1 and s = 10. As expected, I2, which
outputs many spurious grants, is worse when the cost of a
spurious grant is higher.

a/a(0)
b/b(0)

a/b(∞)
b/a(∞)

∗(∞)

Figure 5: Qualita-
tive error model

For the qualitative error model
(Figure 5) and any set of incom-
patible specifications, for all im-
plementations the distance to at
least one of the specifications is
∞. However, for the standard er-
ror model of [6], we show for the
case of two specifications that it

always is possible to do better.

Proposition 3.4. For specifications S1 and
S2 with the standard error model M , let δ =
min(dM (S1,S2), dM (S2,S1)). There exists an imple-
mentation I∗ with dM (I∗,S1) < δ and dM (I∗,S2) < δ.

Proof. Without loss of generality, let dM (S1,S2) ≤
dM (S2,S1). Consider the game graph of QS1,S2M and modify
it by letting Player 2 choose the S1 output transitions, i.e.,
Player 1 chooses the inputs and Player 2 chooses both S1

and S2 outputs. Let π∗2 be the optimal Player 2 strategy in
this game. From π∗2 , we construct two different implemen-
tations I1 and I2 having as the state space the product of
the state spaces of S1 and S2. In the transition set,
• There exists an input transition from (s1, s2) to (s′1, s

′
2)

on the input symbol σi if and only if (s1, σi, s
′
1) and

(s2, σi, s
′
2) are input transitions of S1 and S2;

• There exists an output transition ((s1, s2), σo, (s
′
1, s
′
2))

in I1 iff π∗2 chooses the S1 transition (s1, σo, s
′
1) from

state (s1,#, (s2, e)) and the SM2 transition (s2, σo, s
′
2)

in state (s′1, σo, (s2, e)) ; and
• There exists an output transition ((s1, s2), σo, (s

′
1, s
′
2))

on σo in I2 iff π∗2 chooses the S1 transition (s1, σ
′
o, s
′
1)

from state (s1,#, (s2, e)) and the SM2 transition
(s2, σ

′
o, s
′
2) in state (s′1, σ

′
o, (s2, e)) and SM2 transition

corresponds to the S2 transition (s2, σo, s
′
2) and the

error model transition (e, σ′o/σo, e).
Intuitively, π∗2 chooses the most benevolent S1 behavior and
I1 implements this S1 behavior, while I2 is the S2 behavior
used to simulate this game.

Now, we construct I∗ by alternating between I1 and I2.
For each Player 1 state (s1, s2) in Ii, let TU((s1, s2)) be the
tree unrolling of Ii from (s1, s2) to a depth N ∈ N and let
T (Ii) be the disjoint union of such trees. Let I∗ be the union
of T (I1) and T (I2) where each transition to a leaf state
(s1, s2) in T (I1) is redirected to the root of TU((s1, s2)) in
T (I2), and vice versa.

We now show that dM (I∗,Si) < δ. Consider the

Player 2 strategy π2 in QI
∗,S2
M : to simulate an I∗ transition

from (s1, s2) to (s′1, s
′
2) on σo, π2 chooses the SM2 transition

((s2, e), σo, (s
′
2, e)). If ((s1, s2), σo, (s

′
1, s
′
2)) was from T (I2),

the cost of the simulation step is 0, and otherwise it is equal
to the corresponding transition from QS1,S2M . Now, fix π2

in QI
∗,S2
M and let C be the cycle of the path obtained by

fixing the optimal Player 1 strategy. Cycle C is composed
of paths through I1 and I2 each of length N . The cost of
the path through I2 is 0. The cost of the path through I1

is equal to the cost of the corresponding cycle in QS1,S2M . If
N is large enough, the path through I1 is composed of an
acyclic part of length at most n = 2 · |QS1,S2M | and of cyclic
paths of average cost less than dM (S1,S2) = δ. Therefore,
for all ε > 0 and N > nW

ε
we have

dM (I∗,S2) ≤ V al(π2) ≤ (N − n) · δ + n ·W
2N

≤ δ

2
+ ε < δ

Similarly, we can show dM (I∗,S1) < δ to complete the
proof.

4. QUANTITATIVE ALPHABETS
We have handled the case of controller synthesis from in-

compatible situations where all controlled variables are from
a finite domain. However, often in practice, the controlled
variable can take values from an infinite continuous domain.
For example, an output representing voltage might take any

59

value between 0 volts to 5 volts. Furthermore, in many cases,
although the underlying controlled variable ranges over a
continuous domain, due to practical reasons, the only viable
controllers are the ones which have discretized outputs, i.e.,
allow the variable to assume values from a finite subset of
the domain. In the case of voltages, it might be the case
that the controller can only choose the values from one of 0
volts, 1 volt, 3 volts and 5 volts. Here we present results on
synthesis for incompatible specifications with the controlled
output variables ranging either over a continuous domain,
or a finite discretization of a continuous domain.

Firstly, the notion of simulation distances can be gener-
alized to systems with output alphabets that are infinite
and quantitative. The assumptions about the output alpha-
bet are that: (a) it is a metric space with the metric mO;
and (b) it has a midpoint function, i.e., there exists a com-
putable function µ : O × O → O such that ∀o1, o2 ∈ O :

mO(o1, µ(o1, o2)) = mO(o2, µ(o1, o2)) = mO(o1,o2)
2

. For ex-
ample, any interval I ⊆ R with mI(a, b) = |a − b| and the
midpoint function µI(a, b) = a+b

2
satisfies our assumptions.

For simplicity, we consider only the standard error model
from Section 2 (constant penalty for each mismatch), with
the cost of an edge labeled σ/σ′ being mO(σ, σ′). The re-
sultant simulation distance is a directed metric.

4.1 Continuous Control Problem
For quantitative outputs with continuous control, i.e.,

when the controller can choose the output values from the
whole continuous domain, the problem of synthesis from in-
compatible specifications can be solved with a simple con-
struction. Intuitively, the reason is that when the two speci-
fications differ, we can always find a “middle ground”, due to
our assumption on the existence of the midpoint function µ.
The following theorem states that we can obtain an imple-
mentation which is no farther from either of the specification
than half the original distance between the specifications.

Theorem 4.1. Let S1 and S2 be specifications over a fi-
nite input alphabet I and a quantitative output alphabet O.
Let δ = min(d(S1,S2), d(S2,S1)). There exists an imple-
mentation I∗ such that:
• ∀I : maxi∈{1,2} d(I∗,Si),≤ maxi∈{1,2} d(I,Si);

• d(I∗,S1) ≤ δ
2

and d(I∗,S2) ≤ δ
2

; and
• The number of states of I∗ is in O(n1n2) where ni is

the number of states of Si.

Proof Idea. Consider the game graph G∗ whose states are
the product of the state space of S1 and S2. For transi-
tions (s1, σ1, s

′
1) and (s2, σ2, s

′
2) in S1 and S2, G∗ contains

the transition ((s1, s2), µ(σ1, σ2), (s′1, s
′
2)) having the weight

m(σ1, σ2). We can show that the optimal Player 2 strat-
egy to minimize the LimAvg of the weights in this game
corresponds to the implementation I∗.

4.2 Discretized Control Problem
In the case where a continuous output variable is forced to

take discrete values, the problem of synthesis from incom-
patible specifications is considerably more complex.

We call a finite set O′ ⊆ O a discretization of O. For any
o ∈ O, we let o|O′ = {o′ ∈ O′|∀o′′ ∈ O′m(o, o′) ≤ m(o, o′′)}.

Now, we make a further assumption about the metric-
space of outputs O and the encoding of transitions in the
specifications. For a pair of states, s and s′ in the specifi-
cation, let ∆(s, s′) ⊆ O be the set of outputs o such that

i1 3

i25

(a) S1

i1 2

i24

(b) S2

i1
5
2

i29
2

(c) M

i1 3

i24

(d) P

Figure 6: Example for synthesis using Projection Theorem

a transition (s, o, s′) exists in the specification. We assume
that for every o′ ∈ O′ and for every pair of states s, s′, the
value mino∈∆(s,s′) m(o′, o) is computable. This is the case
for example if the output alphabet represents a real-valued
variable and the transitions in the specifications are given in
terms of intervals.

We remark that due to the assumption on computability,
we can use the synthesis algorithms for finite alphabets from
Section 3 for the discretized control problem. However, we
present a more efficient polynomial heuristic. It is based on
the following theorem for solving the discretized synthesis
problem for a single specification, i.e., finding the optimal
discretized implementation for a single quantitative specifi-
cation.

Theorem 4.2 (Projection). Given a specification S
over the output alphabet O, and a discretization O′ ⊆ O,
there exists an implementation I∗ over the output alpha-
bet O′ such that for all implementations I over the O′,
d(I∗,S) ≤ d(I,S). Furthermore, the number of states of
I∗ is O(n), where n is the number of states of S.

Proof Idea. Consider the game G∗ with the same state space
as S and each transition of S with label o has been replaced
with a transition with label o′ such that o′ ∈ o|O′. The
weight of such a transition is m(o, o′). It is easy to show that
I∗ corresponds to an optimal Player 2 strategy to minimize
the LimAvg of the weights in G∗.
Heuristic Synthesis using Projection For incompatible
specifications, the algorithms for the finite alphabet case
have a high complexity. However, Theorems 4.1 and 4.2
suggest a simple (albeit non-optimal) construction for the
case of discretized alphabets. Given specifications S1 and S2

with output alphabet O or O′, using Theorem 4.1, one could
synthesize an optimal implementation over O, and then use
Theorem 4.2 to get the best approximation over the finite
alphabet O′. Though there is no guarantee that we get the
optimal implementation, it can serve as a good heuristic.

In Figure 6, implementation P (on the discretized O′ =
{2, 3, 4, 5} ⊆ R = O is synthesized from S1 and S2 using this
method. The system M is the optimal implementation for
outputs in R produced by Theorem 4.1 and P is a projection
of M to the discretization O′. In this case, the projection
happens to be the optimal system for discretized outputs.

We leave two questions open: (i) characterizing the im-
plementation obtained in this way w.r.t. an implementation
obtained by synthesis for the finite alphabet directly, and
(ii) deriving heuristics for choosing a projection in case there
are several projections available (e.g. P is only one of the
possible closest projections of M to O′).

To illustrate the second question, consider specifications
S1 and S2 from Figure 7. The implementation I1 is given
by the construction of Theorem 4.1. Any of S1, S2 or P1

can serve as a projection of I1 on the alphabet {0, 1}. How-
ever, for S1 and S2, the distance to the other specification

60

0

(a)
S1

1

(b)
S2

1
2

(c)
I1

01

(d) P1

2
3

(e)
P2

0

2
31

(f) I2

Figure 7: Incompatible Specifications and Projection

is 1, whereas for P1, the distance to both specifications is 1
2
.

Hence, P1 is the better (in fact, optimal) projection.
Furthermore, the optimal solution might not be a pro-

jection of the one obtained from the construction in Theo-
rem 4.1. For S1 and S2, instead of the discretization {0, 1},
consider the discretization {0, 2

3
, 1}. Implementation P2 (a

projection of I1) has distances 2
3

and 1
3

to S1 and S2 respec-
tively. However, I2 (which is not a projection of I1) has
distances 4

9
and 5

9
to S1 and S2, respectively.

5. CASE STUDIES
We present two case studies to demonstrate the use of

simulation distances for modeling conflicting requirements.
These case studies do not consider large-scale examples, but
rather serve to demonstrate that simulation distances and
the synthesis from incompatible specifications framework are
in principle suitable for specifying real-world problems.

5.1 Case study: Synthesis of Forward Error
Correcting Codes

Consider the task of sending messages over an unreli-
able network. Forward Error Correcting codes (FECs) are
encoding-decoding schemes that are tolerant to bit-flips dur-
ing transmission, i.e., the decoded message is correct in-spite
of errors during transmission. For example, the well-known
Hamming (7,4) code can correct any one bit-flip that occurs
during the transmission of a bit-block. The Hamming (7,4)
code transmits 7 bits for every 4 data bits to be transfered,
and the 3 additional bits are parity bits.

Suppose bit-blocks of length 3 are to be transfered over
a network where at most 1 bit-flip can occur during trans-
mission. We want to minimize the number of transmitted
bits. Furthermore, we also allow some errors in the decoded
block. Therefore, we have two incompatible specifications:
• Efficiency. To minimize the number of bits transmit-

ted, we add a requirement that only 3 bits are trans-
mitted and an error model that has a constant penalty
of e for each additional bit transmitted.
• Robustness. We want the decoded block to be as cor-

rect as possible. In a standard FEC scheme, all bits
are given equal importance. However, to demonstrate
the flexibility of our techniques, we consider the first
bit to be the most significant one, and the third to be
the least significant one. We add a requirement that
the decoded bit block is the same as the original, with
the following error model: An error in the first, second,
and third bit have a cost of 4d, 2d, and d, respectively.

Formal modeling. The output and input alphabets are
{T0, T1, R0, R1, O0, O1,⊥} and {I0, I1, F,¬F,⊥} where Ti,
Ri, Ii and Oi stand for transmission, receiving, input and
output of bit i respectively. Symbols F and ¬F denote if a

bit-flip occurs or not during the current transmission. Sym-
bol ⊥ is used whenever the input/output does not matter.

Example 5.1. For example, the diagram below represents
the transmission of bit-block 010 through a system without
any error correction.

In I0 I1 I0 ⊥ F ⊥ ¬F ⊥ ¬F ⊥ ⊥ ⊥
Out ⊥ ⊥ ⊥ T0 R1 T1 R1 T0 R0 O1 O1 O0

First, three bits are input. Next, each of the three bits is
transmitted and received. The environment decides that the
first bit is flipped and the value received is 1 even though 0
is transmitted. Finally, the bit block 110 is output.

In addition to Efficiency and Robustness requirements
above, we need the following. For these, we use the qualita-
tive error model where even a single error is not allowed.
• Encoding and Decoding. For any input (resp., re-

ceived) bit-block, the same sequence of bits should be
transmitted (resp. output). The specification remem-
bers the transmitted (resp., output) bits for each in-
put (resp., transmitted) bit-block and ensures that the
same bits are transmitted (resp., output) in the future.
• Reception. The received bit should be correctly flipped

or not based on whether the input is F or ¬F .
Results. For different relative values of efficiency penalty
e and robustness penalty d, different optimal FEC schemes
are obtained. Suppose b1b2b3 is the input bit-block.
• e = 1 ∧ d = 100. The implementation is fully robust,

i.e., always outputs the right bit-block. For example,
one of the optimal strategies transmits b1, b2, b3, b2 ⊕
b3, b1 ⊕ b3 and b1 ⊕ b2. The bit-block can always be
recovered from the received bits. This has a total error
of 3 for efficiency and 0 for robustness per round.
• e = 100 ∧ d = 1. The implementation transmits only

the three input bits and in the worst case outputs the
most significant bit wrong. The worst-case errors are
0 for efficiency and 4 for robustness per round.
• e = 10 ∧ d = 10. The implementation ensures the

correctness of the most significant bit by transmitting
it thrice (triple modular redundancy), i.e., transmits
b1, b1, b1, b2 and b3. In the worst case, the second bit
is output wrong and the error for efficiency is 20 and
for robustness is 20 per round.

These results show how we can obtain completely different
FECs just by varying the costs in the error models.

5.2 Case study: Optimal Scheduling for Over-
loads

Consider the task of scheduling on multiple processors,
where processes have definite execution times and deadlines.
Deadlines are either“soft”, where a small delay is acceptable,
but undesirable; or “hard”, where any delay is catastrophic.
During overload, processes are either delayed or dropped
completely; and usually these processes are chosen based on
priorities. Our techniques can be used to schedule based on
exact penalties for missing deadlines or dropping processes.

Each process repeatedly requests execution and schedul-
ing is based on time-slices with each processor executing a
single process in a time-slice. A process P(t, d, c) represents:
• the time-slices t needed for the computation;
• the deadline d from invocation time; and

61

2,3

1,2

2,21,1

r̃/g̃
r̃/∗

r/g

r/g̃
∗/g

∗/c

∗/c

∗/g̃

Figure 8: Modelling processes: P(2, 3, 1)

• the minimum time c between the completion of one
invocation and the next request.

We model a process as a reactive system with inputs {r, r̃}
and outputs {g, g̃, c}. The input r represents an invocation,
the output g represents a single time-slice of execution, and
the output c indicates completion of the invocation.

In Figure 8, all states (except the initial) are labeled by
two numbers (t, d) representing, respectively, remaining exe-
cution steps, and time to deadline. Once request r is issued,
execution starts at the state labeled (2, 3) (input and output
transitions are drawn together for readability). If the first
time slice is granted, the execution goes to state (2, 1) (i.e.,
deadline in two steps, and one step of work remaining). If
the time slice is not granted, the execution transitions to
a state labeled by (2, 2). The model (specification) ensures
that the task is completed before the deadline. After it is
completed, the control is in the initial state, where a request
cannot be issued for at least one time step.

We define both hard and soft deadline error models. In
the hard deadline error model, a missed deadline leads to a
one-time large penalty pl, whereas in the soft deadline error
model, a small recurring penalty ps occurs every step until
the process is finished. Furthermore, we have a specification
that no more than n processes can be scheduled in each step,
with the qualitative failure model (Figure 5). We describe
some optimal implementations obtained for various inputs.
• For two P(3, 6, 3) processes and one processor, we ob-

tain a 0 cost schedule where each process is alternately
scheduled till completion. This schedule is obtained in-
dependently of whether the deadlines are hard or soft.
• For P1 = P(5, 5, 5), P2 = P(3, 5, 5), and P3 =
P(2, 5, 5) with P1 on a soft deadline (i.e. with the soft
deadline error model described above), P2 on a hard
deadline, and P3 on a hard deadline. With ps = 1
and pl = 10, we get a scheduler where P2 and P3 are
treated as having a higher priority. Whenever P2 or P3

requests arrive, P1 is preempted till P2 and P3 finish.
• For the same processes, but with ps = 5 ∧ pl = 10, we

get a scheduler where P1 is preferred over P2 and P3.

6. CONCLUSION
There are several possible directions for future research.

From the theoretical side, we will investigate extending the
simulation distances framework to probabilistic systems (to
model probabilistically distributed inputs). The second pos-
sible extension is using bisimulation (as opposed to sim-
ulation) as the basis of distances between systems. From
the practical side, we plan to do a larger case study to test
whether quantitative metrics lead to simpler, more robust,
or easier to maintain real specifications.

7. REFERENCES
[1] R. Alur, T. Henzinger, O. Kupferman, and M. Vardi.

Alternating refinement relations. In CONCUR, pages
163–178, 1998.

[2] R. Bloem, R. Cavada, I. Pill, M. Roveri, and
A. Tchaltsev. Rat: A tool for the formal analysis of
requirements. In CAV, pages 263–267, 2007.

[3] R. Bloem, K. Chatterjee, T. Henzinger, and
B. Jobstmann. Better quality in synthesis through
quantitative objectives. In CAV, pages 140–156, 2009.

[4] P. Caspi and A. Benveniste. Toward an approximation
theory for computerised control. In EMSOFT, pages
294–304, 2002.

[5] P. Černý, K. Chatterjee, T. Henzinger,
A. Radhakrishna, and R. Singh. Quantitative
synthesis for concurrent programs. In CAV, pages
243–259, 2011.

[6] P. Černý, T. Henzinger, and A. Radhakrishna.
Simulation distances. In CONCUR, pages 253–268,
2010.

[7] K. Chatterjee, L. Doyen, T. Henzinger, and J.-F.
Raskin. Generalized mean-payoff and energy games. In
FSTTCS, pages 505–516, 2010.

[8] K. Chatterjee, T. Henzinger, and B. Jobstmann.
Environment assumptions for synthesis. In CONCUR,
pages 147–161, 2008.

[9] E. Clarke and E. Emerson. Design and synthesis of
synchronization skeletons using branching-time
temporal logic. In Logic of Programs, Workshop, pages
52–71, 1982.

[10] L. de Alfaro, M. Faella, and M. Stoelinga. Linear and
branching system metrics. IEEE Trans. Software Eng.,
35(2):258–273, 2009.

[11] J. Desharnais, V. Gupta, R. Jagadeesan, and
P. Panangaden. Metrics for labelled Markov processes.
TCS, 318(3):323–354, 2004.

[12] S. Divakaran, D. D’Souza, and R. Matteplackel.
Conflict-tolerant specifications in temporal logic. In
ICSE, pages 103–110, 2010.

[13] D. D’Souza and M. Gopinathan. Conflict-tolerant
features. In CAV, pages 227–239, 2008.

[14] C. Heitmeyer, M. Archer, R. Bharadwaj, and
R. Jeffords. Tools for constructing requirements
specifications: the SCR toolset at the age of nine.
Comput. Syst. Sci. Eng., 20(1), 2005.

[15] R. Könighofer, G. Hofferek, and R. Bloem. Debugging
formal specifications using simple counterstrategies. In
FMCAD, pages 152–159, 2009.

[16] I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem,
and A. Cimatti. Formal analysis of hardware
requirements. In DAC, pages 821–826, 2006.

[17] N. Piterman and A. Pnueli. Synthesis of reactive(1)
designs. In VMCAI, pages 364–380, 2006.

[18] A. Pnueli and R. Rosner. On the synthesis of a
reactive module. In POPL, pages 179–190, 1989.

[19] F. van Breugel. An introduction to metric semantics:
operational and denotational models for programming
and specification languages. TCS, 258(1-2):1–98, 2001.

62

