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ABSTRACT
Motivated by improvements in constraint-solving technol-
ogy and by the increase of routinely available computational
power, partial-program synthesis is emerging as an effective
approach for increasing programmer productivity. The goal
of the approach is to allow the programmer to specify a part
of her intent imperatively (that is, give a partial program)
and a part of her intent declaratively, by specifying which
conditions need to be achieved or maintained. The task
of the synthesizer is to construct a program that satisfies
the specification. As an example, consider a partial pro-
gram where threads access shared data without using any
synchronization mechanism, and a declarative specification
that excludes data races and deadlocks. The task of the
synthesizer is then to place locks into the program code in
order for the program to meet the specification.

In this paper, we argue that quantitative objectives are
needed in partial-program synthesis in order to produce
higher-quality programs, while enabling simpler specifica-
tions. Returning to the example, the synthesizer could con-
struct a naive solution that uses one global lock for shared
data. This can be prevented either by constraining the so-
lution space further (which is error-prone and partly de-
feats the point of synthesis), or by optimizing a quantita-
tive objective that models performance. Other quantitative
notions useful in synthesis include fault tolerance, robust-
ness, resource (memory, power) consumption, and informa-
tion flow.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—formal methods; D.2.2 [Software Engineering]:
Design Tools and Techniques—computer-aided software en-
gineering ; D.2.8 [Software Engineering]: Metrics—com-
plexity measures, performance measures
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1. INTRODUCTION
While the automatic synthesis of programs has long been

studied from a theoretical point of view, it has recently at-
tracted significant research interest as a way to increase pro-
grammer productivity. The problem of synthesis from spec-
ifications was originally posed by Church [16]. Manna and
Waldinger [31] and Biermann [1] considered the deductive
synthesis of functions from relational specifications. Their
approach is based on the idea that a program can be syn-
thesized from the proof of the specification. The synthesis
system KIDS [35] by Smith uses a similar approach. Clarke
and Emerson [18] presented an algorithm for the synthe-
sis of synchronization skeletons. The synthesis of reactive
systems from temporal logic specifications was considered
in [33] by Pnueli and Rosner. More recently, program syn-
thesis has received renewed research attention mainly due
to work by Solar-Lezama, Bod́ık, and others [38, 36, 37],
who showed how program synthesis can be useful in prac-
tice. Their approach was originally called sketching, and by
several other terms subsequently. We will use the descriptive
name partial-program synthesis.

The goal of partial-program synthesis is “less ambitious”
than the goal of classical synthesis. Rather than to auto-
matically construct a program from its specification, the
aim is to automate a completion of a partially written pro-
gram. For instance, if the partial program already defines
the intended functionality, only nonfunctional aspects (such
as synchronization, security, fault tolerance, and resource
use) need to be synthesized.

Boolean synthesis corresponds to finding one of the many
possible solutions of a given constraint satisfaction problem.
Quantitative synthesis, on the other hand, corresponds to
finding an optimal solution. Specifying optimality requires
the addition of an objective function to the specification.
The objective function may refer, for example, to the use of
resources (time, memory, power), or to the level of robust-
ness or fault tolerance.



2. BOOLEAN PARTIAL-PROGRAM
SYNTHESIS

The goal of partial-program synthesis is to allow the pro-
grammer to specify a part of her intent imperatively as a par-
tial program, and a part of her intent declaratively, by spec-
ifying conditions that need to be achieved or maintained.
The synthesizer then constructs a program that satisfies the
specification.

Example
We illustrate the concepts in partial-program synthesis using
the example in Figure 1. It is a pseudo code for a producer
thread in a producer-consumer concurrent program. In this
example, a thread must authenticate itself (using a password
provided by the user) before starting to access shared data.
After authentication a producer thread, in a loop, attempts
to find an empty slot in a buffer and to store data in this
slot. A consumer thread operates analogously.

First, consider the code concerned with accessing the
shared data structure (lines 9 to 23), which in this case is
a two-element buffer, modeled by variables x and y. Notice
that no synchronization primitives are used. Thus, data
races can occur. For example, two producer threads run-
ning concurrently might both determine that the variable
x is empty, and might try to store values concurrently into
x, leading to a loss of data. This is prevented by adding a
declarative specification, spec1, that requires the implemen-
tation to have no data races (the specification could also
require that there should be no deadlocks, and that every
acquired lock must be eventually released). This is sufficient
to specify the task for the synthesizer — the synthesizer
would need to place synchronization primitives in the code
in order to make sure that the specification holds. However,
the programmer might want to guide the synthesizer further,
by explicitly stating which synchronization primitives should
be used, and where in the code should they be placed. The
synchronization primitives available to the synthesizer are
specified using the choicedef command. The programmer
also specifies where in the code synchronization operations
are performed: this is done by choice statements in lines 11,
14, 16, 17, 20, and 22. Here, the choice statement can be
replaced by any of the commands listed in the definition of
C1. The programmer thus specifies that the synchronization
will be performed using a global lock gl and variable-local
locks xl and yl.

Second, consider the code concerned with the authentica-
tion (lines 1 to 8). It gives the user n possibilities to en-
ter/guess the password. The programmer left the choice of
n partially unspecified — this is the purpose of the choice

statement on line 1. However, the programmer wants to
make sure that the secrecy of the password is sufficiently
protected, and in particular, that the password is not leaked
by allowing too many login attempts. Let us assume that
the programmer adds (naively) a specification spec2 that re-
quires that there is no information flow from the variable
passw to the other program variables.

The task of the synthesizer is to construct a program,
in such a way that the declarative specification, i.e., the
conjunction of spec1 and spec2, is satisfied.

Consider the specification spec1. Analyzing the partial
program in Figure 1, we see that it allows three types of
implementations. We describe a representative of each type.

choicedef C1 : {gl.lock(); xl.lock(); yl.lock();
gl.unlock(); xl.unlock(); yl.unlock();skip;}

public boolean produce() {
1: n = choice(0..10);
2: logged_in = false;
3: for i:= 1 to n do {
4: guess=read();
5: if passw == inp then {
6: logged_in = true;
7: break }
8: }
9: if (logged_in) {
10: while (true) {
11: choice C1; //should be gl.lock() or xl.lock()
12 if is_empty(x) {
13: x = compute_new_data();
14: choice C1; //should be gl.unlock() or xl.unlock()
15: return true }
16: choice C1; //should be skip or xl.unlock()
17: choice C1; //should be skip or yl.lock()
18: if is_empty(y) {
19: y = compute_new_data();
20: choice C1; //should be gl.unlock() or yl.unlock()
21: return true }
22: choice C1; //should be gl.unlock() or yl.unlock()
23: return false } }

}

Figure 1: Authenticated Producer-Consumer

• Incorrect implementations: implementation S1 that
does not use any locks. This leads to data races on
both x and y.

• Global locking: implementation S2 obtained by choos-
ing gl.lock() at line 11, gl.unlock() at line 14, 20,
and 22, and skip at the other choice locations.

• Variable-local locking: implementation S3 obtained by
choosing xl.lock() at line 11, choosing xl.unlock()

at lines 14 and 16, choosing yl.lock() at line 17, and
choosing yl.unlock() at lines 20 and 22.

The synthesizer could therefore choose freely from correct
solutions such as S1 and S2.

Let us consider specification spec2, which requires no in-
formation flow from the secure variable passw to the other
variables. As it can be seen that allowing even one login
attempt leaks at least one bit of information, the only pos-
sibility for the synthesizer is to allow no login attempts at
all (i.e., the synthesizer chooses 0 at line 1).

Partial programs
A partial program is a nondeterministic program. Synthesis
locations in a partial program are program locations which
allow nondeterminism (i.e., locations from which the execu-
tion can continue in more than one way). For example, line
number 1 in Figure 1 corresponds to a synthesis location.
The set of synthesis locations can be defined implicitly or
explicitly. The programmer can state that the synthesizer
can add code at any program location (i.e., implicitly all
locations are synthesis locations). Alternatively, the pro-
grammer can explicitly define which locations are synthesis
locations, and leave only a small number of nondeterminis-
tic choices for the synthesizer. The second option allows the
programmer to have better control over the resulting pro-
gram, and allows for more efficient synthesis. It can be used



for instance when the programmer has a good idea of the
overall structure of the program, but is unsure about some
complex details. For example, in the program in Figure 1,
the programmer coded imperatively the functionality of ac-
cessing a data structure, and knew that synchronization will
be achieved using locks, but left the details of lock placement
to the synthesizer.

A program P is allowed by a partial program R, if P re-
solves the nondeterministic choices at all synthesis locations
of R.

Boolean partial-program synthesis problem state-
ment. Given a partial program R and a specification ϕ,
either generate a program P such that P is allowed by R
and P satisfies the specification ϕ, or report that such a
program does not exist.

Algorithms for boolean partial-program synthesis
The boolean partial-program synthesis problem can be seen
equivalently as a two-player graph game, where Player 1
resolves nondeterministic choices in synthesis locations, and
Player 2 can choose inputs (and the schedule in the case
of concurrent systems). Objectives of Players 1 and 2 are
derived from the specification ϕ of the given boolean partial-
program synthesis problem. The ω-regular objectives are a
broad and widely studied class of objectives that capture
many specifications occurring in practice. For finite-state
systems and ω-regular objectives, existence of strategies for
both players is decidable (see e.g. [24] for a survey of existing
algorithms). Graph games have been used for synthesis in
for example [27, 26, 23].

There is a number of other techniques (i.e., algorithmic
techniques not based on graph games) for partial-program
synthesis. These include counter-example guided inductive
synthesis [37], synthesis from examples [25], or using the
model generation capability of decision procedures [28].

3. QUANTITATIVE PARTIAL-PROGRAM
SYNTHESIS

In this subsection, we show how the synthesis results can
be improved by using quantitative measures and quantita-
tive specifications.

First, we need to define a notion of a program quantity.
A program quantity Q is a function that given a program
returns a value D, where D is a total order. We consider
program quantities that can arise in two different ways:

1. The quantity is inherently present in the semantics of
the program. An example of a program quantity of
this type is, in the context of a request-grant system,
the proportion of requests that are dropped (i.e. not
granted) by the system.

2. The quantity depends not only on the program seman-
tics, but also on a resource dependent on the execu-
tion platform. Typical resources that are considered
are memory, execution time, and power. An execution
platform is modeled by a resource model that assigns
costs to program operations. The cost of an opera-
tion need not be static. A stateful resource model
can model history-dependent costs. If T is a resource
model, we use the notation QT for the program quan-
tity given by T .

Once we defined program quantities, we can generalize
boolean partial-program synthesis in two different ways.

First, synthesis can use a quantitative specification, i.e.,
a specification that refers to a program quantity Q. This
can often be seen as a relaxation of a correctness require-
ment. For example, in the context of a request-grant sys-
tem, a boolean specification might require that all requests
are granted. A quantitative specification might accept a sys-
tem that drops fewer than 5% of requests. The articles [19]
and [4] contain further examples and discussion of quantita-
tive specifications.

Second, a program quantity Q can be used as a quantita-
tive objective, that is a quantity which should be optimized
(e.g. minimized or maximized) by the synthesis algorithm.
For example, we might want a correct program with the
smallest worst-case execution time, or the smallest memory
consumption.

Quantitative partial-program synthesis problem
statement. Given a partial program R, a (quantitative)
specification ϕ, and a quantitative objective Q, either gen-
erate a program P such that Q(P ) is optimal over all pro-
grams that are allowed by R and satisfy ϕ, or report that
such a program does not exist.

Example
Let us revisit the example in Figure 1.

First, consider the specification spec1. We have remarked
that without a quantitative requirement, the synthesizer
could choose freely whether to return the implementation S2

or S3. However, these two implementations are not equiva-
lent with respect to performance. The synthesizer can dis-
tinguish and choose between them using a resource model.
For this example, let us consider history-free resource mod-
els that assign a cost l to locking, a cost c to operations that
access the shared memory, and a cost b to thread-local op-
erations. Consider two such resource models: model T that
has the cost l far greater than the costs c and b, and model
T ′ that has the cost c far greater than the other two costs.
Under resource model T , the potential gain in performance
due to more concurrency allowed by find-grained locking in
implementation S3 is outweighed by the cost of having to
lock twice as often. This means that implementation S2 will
perform better in this case. On the other hand, under re-
source model T ′, the implementation S3 will perform better
(as allowing more concurrency yields greater benefits in this
case) and should be the result of the synthesis. For quan-
titative synthesis, we thus use a quantitative objective QT

(or QT ′), in addition to the specification spec1.
Second, consider specification spec2. We have remarked

that under this specification, the only solution to the synthe-
sis problem is to allow no login attempts at all. We therefore
relax this requirement to a quantitative specification spec′

2,
that requires the information flow from the variable passw

to the other program variables to be less than a constant
d. (The details of the definition of quantitative information
flow are not essential here — we refer the reader to [5] for
more information.) Furthermore, we add a quantitative ob-
jective Qn, which specifies that we prefer to allow as many
login attempts as possible. Qn is defined by the variable n

of the example in Figure 1. The synthesizer should thus re-
turn the program with n maximized, while still keeping the
required bound on information flow.

The specification for the whole program is therefore the
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Figure 2: Resource model (l - locking cost, m -
shared memory access cost, ot - cost of other op-
erations).

conjunction of spec1 and spec2, while the quantitative ob-
jective is the pair of (QT , Qn), with lexicographic ordering.
(Note that QT and Qn can be optimized independently.)

Program quantities
Many quantitative measures of programs can be useful in
synthesis, and a number of them has already been used in
the literature. We first list sample program quantities that
depend only on the semantics of the program.

• Information flow from high security variables to the
other program variables. See [17, 41, 5] for approaches
to verification and synthesis of quantitative informa-
tion flow properties.

• Relaxed correctness requirements (see e.g. [7]). We
described an example of a request grant system. In-
stead of checking whether every request is granted, we
might be interested in measuring how many requests
are dropped. Similarly, linearizability, a standard cor-
rectness condition for concurrent programs can be re-
laxed to a quantitative notion of k-linearizability [32].

• Robustness to violations of input assumptions [3, 2].
For many systems, the execution should satisfy the
specification or be “close” to satisfying the specifica-
tion, even if the input assumptions are violated. This
property is often referred to as graceful degradation.

The following program quantities do not depend only on
the program semantics, but also on the execution platform.
It is for modeling the execution platform that the resource
model is used.

• Resource consumption (execution time, memory,
power). We have mentioned resource models for mea-
suring execution time. Similarly, resource models can
be used to measure for example the maximum amount
of memory used over an execution of the program, or
the total energy used during an execution of the pro-
gram. Models of a similar nature have been used in
literature for analyzing worst-case execution time for
programs [40] or for synthesizing power optimal sched-
ulers [21]. The article [8] shows how resource consump-
tion can be computed for programs composed from
multiple components.

• Fault tolerance. In the context of a fault-tolerant dis-
tributed algorithm (see [29]), we might be interested
in the number of nodes which can fail without com-
promising the correctness of the overall result.

• Concurrency. In the context of concurrent programs,
program quantities that measure how many different
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Figure 3: Resource model of a cache line

interleavings are allowed might be of interest. Such
measures include the size of atomic sections (consid-
ered for example in [39]). These measures can be seen
as using an implicit resource model that prescribes that
allowing more interleavings is better.

Given a resource model T and a program P , a program
quantity QT (P ) is computed as follows. The resource model
assigns a cost to every program operation. Quantity QT (P )
is then defined in two steps. First, the cost of a trace is
defined. For programs with finite traces, one might obtain
the value as a sum of the costs of the operations of the
trace, if we are interested in e.g. the total amount of en-
ergy expended along a program execution. Other aggregat-
ing functions include maximum, average, etc. For programs
with infinite traces, typically discounted sums or mean pay-
off functions are considered (see for example [10]). Second,
given a cost of each trace, we can define QT (P ) as the worst-
case (i.e., maximal or minimal value) over all the traces of
the program, or the average-case (see for example [6]). A
probability distribution over traces can be defined using a
probability distribution over inputs (and over schedules, for
a concurrent program).

Figures 2 and 3 contain two examples of resource models.
These models were used in [6] for quantitative synthesis.
Figure 2 has a one-state resource model for execution time
analysis, similar to models T and T ′ discussed above. It
assigns costs to locking, shared memory access, and all other
operations. The effect of processor caches on execution time
can be modeled by a simple resource model for caches. A
cache line is modeled as in Figure 3. It assigns different
costs to read and write actions depending on whether the
line is cached. The full resource model is the synchronous
product of one such automaton per memory line. The only
actions in the resource model after the synchronous product
(caches synchronize on evict and flush) are READ and WRITE

actions. These actions are matched with the transitions of
the partial program.

In the context of specification, verification, and synthesis,
the term “quantitative” sometimes refers probabilistic set-
tings. While we do not rule out probabilistic aspects (see
for example [11]), we use the term quantitative much more
broadly to refer to different types of program quantities. We
also note that an important special case that can be viewed



as a program quantity is real time. Real-time systems have
been extensively studied. Synthesis [30] and games [20, 14]
have been considered in this context. However, we want to
emphasize that quantitative notions are useful also in the
case of purely finite-state systems and specifications. We
might for example be interested in how far a system is from
a specification. Here the distance between a system and a
specification intuitively measures how much we have to relax
the specification so that it holds for the system [7].

Quantitative synthesis algorithms
We have mentioned that graph games can be used as a foun-
dation for reactive synthesis. This foundation can be nat-
urally extended to quantitative synthesis. The graph game
will again be a two-player game where strategies of Player 1
correspond to programs. The optimal strategy then gives
rise to the program that is the result of synthesis. Recall
that the input to the quantitative partial program synthesis
problem consists of a partial program R, a specification ϕ,
and a quantitative objective Q. After the reduction to a
graph game, ϕ will result in a qualitative objective, while Q
will be translated into a quantitative objective of the game.
There exist algorithms for solving finite-state games with
quantitative objectives (such as mean payoff or discounted
sum objectives) [42, 34], as well as algorithms for games with
both qualitative (ω-regular) and quantitative objectives [13,
9]. Synthesis based on algorithms for graph games with
quantitative objectives for finite state system has been ex-
plored recently [3, 12, 6] .

There exist several other techniques (i.e., algorithmic tech-
niques not based on graph games) for synthesis with quan-
titative objectives. Emmi et al. reduce the optimal lock
allocation problem to a 0-1 ILP which minimizes the con-
flict cost between atomic sections while simultaneously min-
imizing the number of locks [22]. Cherem et al. transform
programs with pessimistic atomic sections to programs with
locks. The transformation chooses from several granulari-
ties, using fine-grained locks if possible [15]. The approach
by Vechev, Yahav, and Yorsh [39] tries to minimize the size
of atomic section in concurrent programs. It is based on
detecting invalid interleavings in the abstracted program.
Whenever an abstract invalid interleaving is detected, ei-
ther the abstraction is refined, or the program is modified
by extending the atomic sections (and thereby eliminating
the invalid interleaving).

Future directions
We argued that quantitative specifications and objectives
are needed in partial-program synthesis in order to produce
optimal programs, while enabling simpler specifications. We
therefore believe that quantitative specifications and objec-
tives are needed if the synthesis approach is to succeed in
practice. However, there are several challenges before quan-
titative synthesis tools can become more widely applicable.

First, there is a programming languages challenge to find
languages that can capture various specification artifacts.
The programmer needs to be able to define a partial pro-
gram with constraints on its nondeterminism, a (quantita-
tive) specification, and a quantitative objective. In order
for programmers to benefit from synthesis techniques, it is
necessary to find a way for integrated specification of these
synthesis inputs.

Second, consider resource-aware synthesis, that is, synthe-

sis that returns programs that are optimal with respect to
the consumption of a particular resource. In this case, it is
necessary to have resource models that capture target archi-
tectures on which the program is to be used. The models do
not need to be designed for each synthesis problem, but in-
stead only once for each system architecture. However, the
problem of constructing resource models and finding their
parameters remains a research challenge.

Third, there is an important issue of scalability. Quanti-
tative synthesis is useful for well-defined classes of small pro-
grams (e.g. the class of concurrent data structures), where
current techniques and algorithms might be sufficient. How-
ever, new approaches are needed if quantitative synthesis
is to scale. The techniques could include quantitative ab-
stractions of games, i.e., abstractions that preserve values
of strategies with respect to quantitative objectives (or at
least the relative ordering of strategies with respect to quan-
titative objectives). Further improvements or development
of new (symbolic) quantitative game solvers would also im-
prove the scalability of synthesis.
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