Performance Search Engine
Driven by Prior Knowledge of Optimization

Youngsung Kim

University of Colorado, Boulder and
National Center for Atmospheric Research,
USA

youngsung®@ucar.edu

Abstract

For scientific array-based programs, optimization for a particular
target platform is a hard problem. There are many optimization
techniques such as (semantics-preserving) source code transfor-
mations, compiler directives, environment variables, and compiler
flags that influence performance. Moreover, the performance im-
pact of (combinations of) these factors is unpredictable. This pa-
per focuses on providing a platform for automatically searching
through search space consisting of such optimization techniques.
We provide (i) a search-space description language, which enables
the user to describe optimization options to be used; (ii) search
engine that enables testing the performance impact of optimiza-
tion options by executing optimized programs and checking their
results; and (iii) an interface for implementing various search al-
gorithms. We evaluate our platform by using two simple search
algorithms - a random search and a casetree search that heuristi-
cally learns from the already examined parts of the search space.
‘We show that such algorithms are easily implementable in our plat-
form, and we empirically find that the framework can be used to
find useful optimized algorithms.

Categories and Subject Descriptors 1.2.2 [Automatic Program-
mingl; D.3.4 [Programming Language]: Optimization; G.1.0
[Numerical Analysis]: Numerical algorithms

Keywords Performance, automated optimization, code genera-
tion, scientific computing

1. Introduction

Automating the task of performance optimization has been widely
recognized as a difficult task since the 1990s [11]. Most of auto-
matic optimizations are done by compilers. However, compiler, as
a general-purpose tool, has to generate correct result within limited
time. Therefore, in general, it cannot search through and test results
of different optimization techniques (such as semantics-preserving
source code transformations) for the target platform. Hence, the
level of optimization is restricted. Furthermore, there is an ever in-
creasing number of available compiler flags to support new proces-
sors as well as advanced optimization techniques. It is generally a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

Array ’15, June 13-14, 2015, Portland, OR, USA.

Copyright © 2015 ACM 978-1-4503-3584-3/15/06. .. $15.00.
http://dx.doi.org/10.1145/2774959.2774963

Pavol Cerny

University of Colorado, Boulder, USA
pavol.cerny@colorado.edu USA

John Dennis

National Center for Atmospheric Research,

dennis@ucar.edu

very time-consuming task to find a “right” set of flags that meets
user’s optimization goal, and furthermore, it is not always clear if
the goal is achievable or not.

In order to complement the performance optimization done by
compilers for scientific array-based programs, we propose an auto-
mated system that searches through (combinations of) optimization
techniques and their parameters in order to find the best technique
for the given architecture. There are two factors that make automa-
tion essential : (a) the size of the search space, which grows ex-
ponentially with the number of optimizations that can be applied,
and (b) the non-smooth, even chaotic, nature of performance im-
pact of various optimizations. The latter point is illustrated in [10],
which states “[T]he performance dynamics of a program running
on a modern computer can be complex and even chaotic.”

Automated techniques for semantics-preserving program trans-
formations can be seen as an instance of program synthesis. Work
by Solar-Lezama, Bodik, and others [16—18] has demonstrated that
synthesis can be effectively applied to problems in a wide variety of
areas such as concurrent data structures [7, 18, 20, 21] spreadsheet
transformations [5, 6], and many others. However, these works fo-
cus on correctness, not performance. One approach to program syn-
thesis is superoptimization [15]. Superoptimization is the task of
finding the optimal code sequence for a single, loop-free sequence
of instructions. The approach in [15] applies classical algorithms
(such as Metropolis-Hastings) to find the optimal sequence of in-
structions to replace the original straight-line code.

The goal of this paper is to enable superoptimization techniques
for kernels of scientific array-based programs (kernels are small
computation-intensive parts of scientific software). Our contribu-
tions towards this end are three-fold: First, we provide a search-
space description language (SSDL), a domain-specific language
that enables the user to describe optimization options to be used.
An SSDL description thus captures the prior knowledge of the user
about which optimizations are likely to be useful. Second, we de-
velop a search engine that asks a search algorithm which combi-
nation of optimization techniques to use, and then executes the re-
sulting program, and checks its results. An efficient heuristic of
checking the results of the optimized program is possible precisely
because we target scientific array-based programs, where there are
relatively few control branches that depend on the contents of the
array. Third, we provide an interface of the search engine that en-
ables different search algorithms to be plugged in with ease. In this
way, we enable streamlined development of new superoptimization
techniques.

In order to empirically evaluate our search engine, we develop
two sample algorithms. The first algorithm chooses, at all times,
the next set of optimization techniques to be examined randomly.
The second algorithm, which we call casetree, learns from previ-

ously examined cases. We evaluate whether the algorithms pro-
duce programs that are (a) correct w.r.t. the original program, (b)
have improved performance, and (c) how long does the optimiza-
tion process take for kernels of typical size. The correctness was
simply evaluated by human experts, and it was found that the sim-
ple checking of results with respect to the original program is suf-
ficient in practice. Methods for more extensive automated testing
and verification are left for future work. The optimization process
took around 78 minutes (for a relatively simple kernel), and the
performance of optimized scientific kernel increased by 50%.

Related Work In addition to program synthesis line of work ex-
plained above, related work includes peephole optimization [1, 2]
and superoptimization [15], which find the optimal code sequence
for a single, loop-free sequence of instructions. Furthermore, there
are many technologies that work on loops in source code, such as
polytope model [9]. Olschanowsky et al recently applied polytope
model to generate thirty different inter-loop optimization strategies
on NUMA multicore node [12]. Pouchet et al proposed charac-
terization of multidimensional affine transformations as a convex
space and an optimization algorithm on the space [14]. As loops
are generally the most time-consuming part of program, technolo-
gies in this category have strong importance in practice. However,
their applications are also limited to fragments of entire program.
Another approach of providing automated optimization is through
specialized library. For example, Automatically Tuned Linear Al-
gebra Software (ATLAS) [22] provides portably optimal linear al-
gebra library, as the library finds automatically finds its own pa-
rameters that are optimal for a given architecture. There are several
approaches for automating program optimization. Suda proposed
online automatic tuning based on a Bayesian reasoning [19]. In this
method, several program and system parameters are tuned. Based
on a similar approach, IBM has developed ”"IBM High Productiv-
ity Computing Systems Toolkit” which optimizes performance of
libraries in real time. These two approaches do not change source
code, but rather tune it through parameterization. Barik et al pre-
sented an auto-vectorization framework in the back-end of a dy-
namic compiler that includes scalar packing and algebraic reasso-
ciation [3]. Cavazos et al applied machine learning for ordering
optimization techniques during compilation [8].

2. Illustrative Example

We illustrate our approach on a small piece of computation-
intensive code called DG kernel. The kernel is important enough to
be optimized manually by multiple optimization experts, including
engineers employed by compiler vendors. The experts optimized
the code with respect to particular architectures, such as Intel Xeon
Phi and Nvidia GPUs.

DG Kernel DG Kernel is derived from one of the computation-
ally intensive parts of the High-Order Method Modeling Environ-
ment (HOMME) [4]. HOMME is a framework to investigate the
utilization of high-order methods to build scalable, accurate, and
conservative atmospheric general circulation models. DG Kernel
calculates the gradient in the Discontinuous Galerkin (DG) formu-
lation of the shallow water equations. There are two outer-most
DO loops in DG kernel code shown in Figure 1. The first DO loop
(line 5) calculates the gradient for every element and the second
DO loop (line 25) updates two arrays using the calculated gradient.
The term element represents a unit area in a simulation grid.

2.1 Performance Optimization Techniques

Performance optimization can be achieved at every stage of soft-
ware development, from design phase to execution phase, and a
wide range of optimization techniques is typically available to de-
velopers at every stage. We focus on the following optimization

1 !$OMP PARALLEL DEFAULT(NONE) &

2 !$OMP SHARED(flx , fly , grad, delta ,der ,gw) &
3 !$OMP PRIVATE((ie ,ii,i,j,k,l,s2,5s1)

4 I1$OMP DO

5 DO ie=1,nelem

6 DO ii=1,npts

7 k=MODULO(ii —1,nx)+1

8 I=(ii —1)/nx+1

9 s2 = 0.0_8

10 DO j =1, nx

11 sl = 0.0_8

12 DO i =1, nx

13 sl = sl+(delta(l,j)*flx (i+(j —1)*nx,ie)*x&
14 der(i,k)+delta(i,k)*fly (i+(j—1)*nx,ie)*&
15 der(j,1))*gw(i)

16 END DO

17 s2 = s2+sl*gw(j)

18 END DO

19 grad (ii ,ie) = s2

20 END DO

21 END DO

22 !$OMP END DO

23

24 /$OMP DO

25 DO ie=1,nelem

26 DO ii=1,npts

27 flx (ii ,ie) = flx (ii,ie)+dtxgrad(ii,ie)
28 fly (ii ,ie) = fly (ii,ie)+dtxgrad(ii,ie)
29 END DO

30 END DO

31 !$OMP END DO

32 /$OMP END PARALLEL

Figure 1. DG Kernel

techniques: (a) setting environment variables, (b) applying (right
combinations of) compiler flags, (c) source code transformations,
including adding compiler directives in source code.

Environmental Variables In some cases, it is important to setup
environment variables correctly in order to achieve good perfor-
mance. For example, the value of "OMP_NUM_THREADS” tells
the OpenMP library how many threads to use. Another example of
environment variable usage is that thread affinity can be configured
using an environment variable such as "GOMP_CPU_AFFINITY”
for a GNU compiler.

Compiler Flags Most of modern compilers provide vast number
of compiler flags that affect to performance. The ”-O3” compiler
optimization flag is a common example for high-level optimiza-
tion. There are many categories of compiler flags used for perfor-
mance optimizations including vectorization, parallelization, data
alignment, instruction-set generation, etc. Selecting the right set of
compiler flags for optimization is, in general, a challenging and
time-consuming task.

Source Code Transformations The performance of a given pro-
gram on a particular architecture depends on many factors, includ-
ing cache/memory usage pattern, required cycles per instruction,
synchronization among threads, etc. These factors can be improved
by a number of semantics-preserving code transformations. Typi-
cally, loops are the most time-consuming parts of code. There are
therefore many source code transformation techniques developed
for optimization of loops, including loop unrolling and loop merg-
ing/splitting. These techniques may, for instance, achieve regular
memory access pattern in order to help maximize the performance
of cache and memory on processor.

2.2 Manual Optimization and Results

DG kernel shown in Figure 1 has been manually optimized for bet-
ter performance by several experts. The speed-ups achieved by dif-
ferent experts vary largely. The best speed-up was achieved by ap-
plying a combination of multiple optimization techniques shown in

[Environmental variables]
OMPNUM_THREADS=16
[Compiler flags]
—openmp —O3 —align array64byte —opt—prefetch=0
[Compiler directives]
!DEC$ ATTRIBUTES ALIGN, !DEC$ ASSUME_ALIGNED
!DEC$ vector always aligned
!$OMP END DO nowait, and !DEC\$ noinline
[Source transformations |
Loop unroll, loop merge, array—merge, pre—calculation

Figure 2. The optimization techniques that produce the best DG

kernel performance on Intel SandyBridge.

DG_KERNEL - Performance Results on Intel SandyBridge
130G,

100G

Manual optimization

Reference w/ -03.
10G
16

107 10° 10" 10 10° 10° 10 10° 10 10 10°
of ELEMENTS

PERFORMANCE (Analytic DP FLOPS)
w
3
)

Figure 3. Performance results for original and manually-
optimized code on Intel SandyBridge

Figure 2. Figure 3 shows performance results of original and man-
ually optimized DG kernel on Intel SandyBridge. Elements in the
plot represent the size of problem to solve. Analytic DP FLOPS is
a relative performance metric calculated as the analytically com-
puted number of double-precision floating-point operations from
the original code divided by running time of the execution.

However, finding the right set of optimization techniques for
a given program and architecture is not always a feasible option
for an engineer. To them, it is not always clear which optimization
techniques will work, and it is too time consuming to try many dif-
ferent optimization techniques and their parameters. Furthermore,
it is generally getting more difficult to optimize performance on
new types of micro-architectures such many-core processors and
GPUs as it has deeper layers of memory hierarchy, more cores, and
longer vector registers; hence, the effect of various optimization is
thus more unpredictable.

2.3 Performance Optimization as a Search Problem

One can see the process of manual performance optimization as
searching for an optimal set of optimizations (and their parameters)
among all available ones. A search space can be created as follows.
For example, if we want to select one of ”-O1”, ”’-02”, and ”-03”
compiler optimization flags, it defines a search space with three
options. In another example, if we want to unroll three Fortran DO
loops, let’s say "LOOP1”, "LOOP2”, "LOOP3”, that defines search
space, with 8 values - that is we can choose a subset of the loops
to unroll. In principle, all these 8 options may have very different
performance. The search space for other types of source code
transformation has a more complex structure, as sometimes the
order in which these transformations are applied matters. Consider
the case of loop merging (we could for instance merge the first DO
loop (line 5) and the second DO loop (line 25) into one loop) and
loop unrolling: it matters whether we unroll the first loop and then
merge, or merge and then unroll. We thus consider combinations
(and permutations where appropriate) of optimization techniques to
create search spaces. We then consider the product of these search
spaces as the overall search space.

2.4 Properties of the Search Space

There are two properties of the search space that make finding
the optimal set of optimization techniques difficult: the size of the

search space, and the non-smoothness of the impact on perfor-
mance. First, the search space generated from combinations/permu-
tations of optimization techniques is extremely non-smooth. That
is, the impact on performance of one set of options may be very dif-
ferent from the impact of a very similar set. This makes searching
through the search space time-consuming, and perhaps frustrating,
to do manually. Second, the size of the search space grows expo-
nentially with the number of optimization techniques considered.
In the examples we consider, the size can easily grow beyond 2%,
even considering only basic source code transformations and com-
piler flags.

Due to the fact that search space can be very large, and per-
formance is non-smooth as a function defined on this search space,
automating the search can improve productivity of performance op-
timization enormously. OpenCase is a tool developed to generate
search cases based on user-defined optimization schemes and actu-
ally executes each case that a search algorithm requests on a ma-
chine. In this paper, two such search algorithms, random search and
casetree search, are described and evaluated.

3. OpenCase: Specification of Optimizations and
Performance Search

OpenCase allows user to define a search space based on user-
selected optimization techniques, described in the Search-Space
Description Language (SSDL). In what follows, a case refers to a
set of particular optimization techniques that can be applied to orig-
inal Fortran program. The search space consists of a large number
of cases. OpenCase executes each case on the target machine and
tests the correctness of the optimized program with respect to the
original program. The whole process is performed automatically.

3.1 Search Space Generation with Compiler Flags and
Source Transformation Techniques

Search-Space Description Language (SSDL)

Users can define the search space of optimization techniques in
SSDL. Figure 4 shows the core part of SSDL definition.

(direct-listy = (direct) | (direct) (direct-list)
(direct) = (direct-name-opt) (LB) (elem-list) (RB) (gen-opt)
(elem-listy = (elem) | (elem) ; (elem-list)
(elem) |= (item-list) : (attr-list)
(item-list) ~ |= (item) | (item) , (item-list)
(attr-listy = (attr) | (attr) , (attr-list)
(item) = STRING | (direct)
(attry |= (keyword) = (item)
W) = ({11 ¢
RB) E)|} I11)
(gen-opt) = NEWLINE | (gen) | (gen) NEWLINE
(gen) |= EMPTY | * | NUMBER | *NUMBER

Figure 4. Search-Space Description Language(SSDL)

In OpenCase, the user creates search cases using SSDL based on
the user’s prior-knowledge on performance optimization. {(direct)
symbol constructs OpenCase directives. For example, "BUILD(make:
makefile=Makefile, FC=ifort, FC_FLAGS=(-01;-02;-03)1)” de-
scribes that OpenCase will build the software using the make
building system with Intel Fortran compiler and one of the three
compiler flags:”-01”, ”-02”, and”-O3”. Thus, the directive creates
three search cases. In the example, “make” is an instance of (item)
or (item-list), and "FC=ifort” is (attr) or (attr-list).

In SSDL, each brackets represent different types of case gen-
erations: parenthesis, ~’()”, for combination, square brackets, "’[]”,
for permutation, braces ”{}”, for accumulative combination, and
chevrons, ”()”, for accumulative permutation. Asterisk mark in

0.
No unroll [Unroll L1] [Unroll L2] [Unroll L1 & L2]

0.

Figure 5. A tree representation of the search space generated from
?((-02;-03)1;(-fast;-xHost)1)” and ”{L1;L.2}*” SSDL description.
Each node of the tree has weights assigned to each sub-branch.
Dark boxes have the highest probabilities to be chosen

(gen) symbol represents an empty set case and number in the sym-
bol represents the number of elements to select. If number is omit-
ted, it is interpreted as the number of all elements. ”Accumulation”
of braces and chevrons has meaning of summing up all the cases
up to the specified number in (gen) symbol. Some examples of se-
lected usages are below. =>"" in the examples means “generates.”

(a;b;c)2 => { (a,b), (a,c), (b,c) }

[aibsc]2 => {(a,b).(b,a),(a,c),(c,a),(b,c),(c,b)}

{asbic}s2 = {(),(a),(b),(c),(a,b).(a,c),(b,c)}

<aibje>x => {(),(a),(b),(c).(a,b),(a,c),(b,c),(a,b,c),
(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a)}

A more complicated search space can be modeled as a tree.
Assume that we want to create search cases with unrolling some or
none of two loops, applying one of ”-O2” and ’-O3” compiler flags,
and one of “-fast” and ”-xHost” compiler flags. Figure 5 shows
the search space in a tree model. In this model, finding a right set
of optimization techniques is formulated as search for a case that
comprises of the “right” decision nodes from the root to a leaf.

3.2 Implementation of Optimization Techniques

While SSDL does not limit the types of optimization techniques
to be expressed, current OpenCase implementation supports three
types of optimization techniques: environmental variables, com-
piler flags, and source code transformations.

Environmental Variables With "PRERUN” OpenCase directive,
user can specify search cases with a command that will be executed
before compiling source code. SSDL syntax and an example are
shown below.

SSDL SYNTAX :PRERUN <direct>

EXAMPLE : PRERUN(’ export .OMP.NUM.THREADS=8 " ;
*export OMPNUM_THREADS=16")1

Compiler Flags Among various software building system, Open-
Case currently supports only “make” building system. Two at-
tributes, FC and FC_FLAGS, are used for specifying a compiler
command and compiler flags as shown below.

SSDL SYNTAX :BUILD <direct>

EXAMPLE: BUILD(make: makefile=Makefile ,
FC=ifort ,FC_FLAGS=((—02;—03)1;(— fast;—xHost) 1))

Source Code Transformations There are various source code
transformations implemented in OpenCase. The exact syntax is
different for each transformation. However, all of them follows
general syntax: name of transformation followed by parameters of
the transformation as shown below.

SSDL SYNTAX :SRCGEN <direct>
EXAMPLE:SRCGEN(loop_unroll:target={L1;L2}x)

The following list shows the names of source code transforma-
tions implemented in OpenCase. Unroll repeats the body of a loop
to reduce the iteration of the loop. Merge combines multiple loops
into one. Split seperates a body of a loop into multiple ones. Inter-
change switches the loop-control of the inner loop with the loop-
control of the outer loop.

Loop transformations: Unroll, Merge, Split, Interchange

Compiler directives: OpenMP, Any directive
Primitives: Statement insert/delete , Name modify/switch

3.3 Performance Search Engine

OpenCase modifies source codes and generates a shell script ac-
cording to the case number of the search space generated from
SSDL description. It then executes the shell script, collects output
data, and checks its correctness. The process stops if the perfor-
mance result meets user’s goal, or it continues if it does not. Figure
6 shows the process in a block diagram.

Fortran Generate Execute shell
source Construct Select next transformed Generate script (build
search space case " shell script Y
cod source code and run)
SSDL
Update state of search Measure and verify

Figure 6. OpenCase block diagram. Search algorithm provides
OpenCase with functions for the two gray blocks

description of
search space

Source Code Generation First, OpenCase transforms source files
according to information collected from OpenCase "SRCGEN”
directives. If there are multiple transformations defined, each of
them is applied in order. If two transformations are not compatible,
latter transformation is not applied.

Shell Script Generation In this stage, OpenCase utilizes sev-
eral OpenCase directives including "PRERUN”, "BUILD”, "EX-
ECUTE”, and "POSTRUN" and populates them into a shell script
in order. This is a conventional shell script file.

Shell Script Execution The generated shell script contains com-
mands required to execute a search case. OpenCase creates a sep-
arate process to run the shell script. The compiled program is
run multiple times to improve the accuracy of performance mea-
surement according to user-provided configuration through "EXE-
CUTE” OpenCase directive.

Measurement and Checking In this stage, OpenCase utilizes
two OpenCase directives, "MEASURE” and "VERIFY”. Current
implementation of OpenCase collects kernel output from standard
output during kernel execution and applies verfication method stat-
ically specified in "VERIFY” OpenCase directive to the collected
kernel output. User can specify different methods to capture the
results of the optimized case and to check the correctness of the
measured results according to the "VERIFY” directive. An effi-
cient heuristic of checking the results of the optimized program is
possible for scientific array-based programs, where there are rela-
tively few control branches that depend on the contents of the array.
Hence, if the results of the optimized and unoptimized version are
the same for a small number of input arrays, it is an indication that
the result would be the same for all input arrays. Empirically, this
type of simple checking mechanism was validated for array-based
programs.

4. Search Algorithms

In practice, it is essential to devise a search algorithm that exam-
ines a smaller number of sets of optimizations until OpenCase finds
a case that meets the user-specified goal. To make it possible to de-
velop various search algorithms, OpenCase provides a simple in-
terface that enables the user to implement a new algorithm with
ease. The interface has two functions: one for selecting next case
number, and the other to update the internal information on the
search space. These functions are called at every iteration of the
search process. Two sample algorithms, random search and case-
tree search, are implemented in order to illustrate the simplicity of
using the OpenCase interface.

Random Search Random search algorithm generates randomly
the next case to be examined. The chance to find the cases that
meets user’s goal is proportional to the ratio of the number of
“good” cases to the total number of cases in the search space.

Casetree Search Casetree search algorithm generates a case
number for the next case to be examined according to the prob-
ability distribution among optional choices on each decision nodes.
Figure 5 shows an example tree representation of a search space
with weights assigned to each sub-branches. The main idea of the
algorithm is to increase the weight of a branch if a decision rep-
resented by the branch in the tree had better performance impact,
and to decrease it for negative impact on performance. The updated
weights of a node, in turn, form a probability distributions that a
next case is selected from. In this way, the algorithm uses knowl-
edge learned from previous decisions and their results. Algorithm
1 shows the pseudo code for the “update” function which updates
weights of sub-branches. There are two failure cases in the algo-
rithm: compilation error and checking error. A weight of a choice
is decreased in a failure case except when the choice was used for
generating the current best case. By having this exception, the al-
gorithm gives more chances to the choices that contributed to the
best case.

Algorithm 1 update(case,ranking,num_success,num_failure)

if execution is failed then
if current choice did not contribute for current best case then
decrease weight
else if execution is successful then
if ranking is better than median then
increase weight

5. Results

Two kernels are automatically optimized using OpenCase on Intel
SandyBridge. DG Kernel is described in Section 2. Taumol03 ker-
nel is extracted from PSRad [13]. PSrad is a new radiation package
designed for use in models of the atmosphere. We evaluate whether
the algorithms produce programs that are (a) correct w.r.t. the orig-
inal program, (b) have improved performance, and (c) how long
does the optimization process take for kernels of typical size. The
correctness is checked as explained in Section 3 and finally con-
firmed by human experts.

An experiment is setup with random search and casetree search
algorithms. In one experiment, 700 cases are evaluated in DG ker-
nel and 1000 cases are in Taumol03 kernel. On average, evaluating
one case by OpenCase took 6.7 seconds for DG kernel and around
8.6 seconds for Taumol03 kernel. The whole optimization process
took around 78 minutes. A kernel generated in one search case is
executed five times for improving accuracy of timing measurement.
Each experiment is tagged as RAND n (random search) or CTREE
n (casetree search) in Figure 8 and Figure 9.

Figure 7 shows the SSDL description used to specify a search
space for automated DG kernel optimization using OpenCase.
PRERUN, SRCGEN, and BUILD OpenCase directives are ex-
plained in Section 3. The other OpenCase directives do not con-
tribute for increasing the search space, but provide OpenCase with
operational information. REFCASE provides a sequence of com-
mand that generate the reference performance output. CLEAN tells
OpenCase how to initialize the kernel before executing next mod-
ified kernel. EXECUTE contains information to run the kernel for
each search case. MEASURE defines what to measure. VERIFY
tells OpenCase how to check the correctness of an output from ex-
ecuting a search case. RANK selects a measurement for ranking.
CASEGEN selects a search algorithm for the experiment.

Figure 8 and 9 show the best performances found by OpenCase
for the DG kernel and the TaumolO3 kernel. Horizontal axis con-
tains experiments and vertical axis shows performance. For the DG
kernel, the performance is represented by Analytic Giga-Floating-
Point Operations Per Second (GFLOPS). This metric is obtained
by dividing the total number of analytically counted FLOPs in the

REFCASE(’ export .OMP.NUM.THREADS=16;
~.make_clean ;_make_ref_recover ;._make
~.build .FC=ifort .FC_.FLAGS="—03_—openmp ”; _make_run ")
PRERUN(’export .OMPNUM_THREADS=16";
>export .OMPNUM.THREADS=32")1
SRCGEN(loop_unroll: target={80;100;230}x,
factor=full , method=("inc’; ’const’)1)
SRCGEN(loop-merge: from=220, to=30)x*
SRCGEN(loop_-merge: from=230, to=40)x*
SRCGEN(loop_split: before=(250)x%)
SRCGEN(loop_interchange: outer=220, inner=230)*
SRCGEN(remove_stmt: target=(200;210;280;290))x*
SRCGEN(name_change: target=(240;250), switch="1ii:ie)x*
CLEAN(make: makefile=Makefile , target=clean)
BUILD (make: makefile=Makefile , target=build,
FC=ifort , FC.LFLAGS=("—openmp’; (—02;—03;—fast)1;
(’—opt—assume—safe—padding ")*; (’—opt—prefetch=0";
—opt—prefetch=3")1;{ —no—prec—sqrt ’; ’—no—prec—div’ }))
EXECUTE(make: makefile=Makefile, target=run,repeat=5)
MEASURE(gflops: prefix="Gflops...="
MEASURE(f1x _diff: prefix="SUM(flx).=")
VERIFY (fl1x_-diff: method="diff’, refval="0.1113450E+02",
maxdiff="1.0E—15")
RANK(gflops: sort=descend)
CASEGEN(ctree)

Figure 7. SSDL description for DG kernel search space
DG Kernel - Best Performance found by OpenCase
60 (5 experiments with the same search-space)

I reference performance
mmm best performance found by OpenCase

Casetree Search Algorithm

Random Search Algorithm

PERFORMANCE (Analytic GFLOPS)
N w =
&

o

RAND RAND RAND RAND RAND CTREE CTREE CTREE CTREE CTREE
1 2 3 4 5 1 2 3 4 5

Experiment

Figure 8. DG kernel best performances found by OpenCase on
Intel SandyBridge

Taumol03 Kernel - Best Performance found by OpenCase
400000, (5 experiments with the same search-space)
Random Search Algorithm Casetree Search Algorithm

35000

30000¢

25000

20000

15000

10000

PERFORMANCE (1 / elapsed_second)

5000 @ reference performance
mmm best performance found by OpenCase

e e e
CTREE CTREE CTREE CTREE CTREE
1 2 3

o RAND RAND RAND RAND RAND
1 2 3 4 5

Experiment

Figure 9. Taumol03 best performances found by Opencase on
Intel SandyBridge

original source code by elapsed execution time of each executed
case. Each darker bar in the plots is the best performance found by
OpenCase among all the cases executed in the experiment.

The first observation is that OpenCase found better performance
than reference performance in all experiments of both of two ker-
nels regardless of algorithm used. This proves that the search-space
specified by OpenCase directives in Figure 7 contains some cases
that generate better performance than reference performance, and
OpenCase can find those "good” cases. Casetree algorithm consis-
tently found higher performance results than random algorithm in
DG kernel experiments. There is not a significant difference be-
tween two algorithms for Taumol03.

While finding the best-performing case is the most interesting
result in performance optimization, OpenCase enables to collect

Table 1. Compiler flags and their usage count for top30 cases of
DG kernel found by OpenCase

[compiler flag [count |
-fast 25
-opt-assume-safe-padding 21
-opt-prefetch=3 21
-no-prec-sqrt 14
-no-prec-div 10

DG_KERNEL - Performance Results on Intel SandyBridge
1306, with automated optimization using OpenCase

100G

Manual optimization

Automated opt. w/ OpenCase

w
3
[}

Reference w/ -03.

PERFORMANCE (Analytic DP FLOPS)

S
o)

1G!
107 10° 10" 10 10° 10" 10 10° 10 10 10°
of ELEMENTS

Figure 10. Performance results for original, manually optimized
code, and OpenCase-optimized code on Intel SandyBridge

additional information that provides user with better understand-
ing of performance optimization. As an example, we shows that it
is possible to find out the right” set of optimization techniques.
Table 1 shows the compiler flags that are used for top 30 cases in
DG kernel experiments and the counts of each flags. As all of com-
piler flags in Table 1 come from top 30 cases, they are considered as
”good” compiler flags for performance on Intel SandyBridge. Espe-
cially ”-opt-assume-safe-padding”, ”-fast”, and "-opt-prefetch=3"
worked better than the other flags.

Finally, Figure 10 shows the performance results for the origi-
nal, manually optimized, and automatically optimized DG kernels
in one plot to compare the level of optimizations. Automated per-
formance optimization has achieved around 1.5X speed-ups from
the original performance and marked around 50% performance
compared to the performance from manual optimization. Array-
merge and pre-calculation source transformations are key tech-
niques for speed-ups in manual optimization, and their implemen-
tation is left for future work.

6. Conclusion and Future Work

In this paper, we showed that automated optimization using Open-
Case can explore a large number of different optimizations. This
would be hard to achieve through manual optimization in practice.
We showed that OpenCase can achieve better performance than a
conventional compiler optimization, because it can generate search
space based on user’s prior knowledge on performance optimiza-
tion, and search efficiently Two examples of automated optimiza-
tion on OpenCase are presented: DG kernel and Taumol03 kernel.
In both cases, OpenCase found an optimized case that shows better
performance than each of reference cases. In addition, it is shown
that the output from the automated searching on OpenCase could
generate valuable information that user can get insights on perfor-
mance optimization for the target architecture.

Currently, there are two directions for future work. First, ad-
vanced source transformations could be added to OpenCase. By
having them OpenCase can get closer to performance results
achieved by manual optimization. Second, better search algorithm
could be added to OpenCase. We plan to investigate uses of clas-
sical and custom optimization algorithms (such as Metropolis-
Hastings, simulated annealing) or machine learning algorithms.

Acknowledgments

This work was supported in part by a gift from the Intel Corpora-
tion, through NSF Cooperative Grant NSFO1 which funds the Na-
tional Center for Atmospheric Research (NCAR), and through an
Intel Parallel Computing Center grant from the Intel Corporation.

References

[1] S. Bansal and A. Aiken. Automatic generation of peephole superopti-
mizers. In ASPLOS, pages 394—403, 2006.

[2] S. Bansal and A. Aiken. Binary translation using peephole superopti-
mizers. In OSDI, pages 177-192, 2008.

[3] R. Barik, J. Zhao, and V. Sarkar. Efficient selection of vector instruc-
tions using dynamic programming. In MICRO 2010, pages 201-212,
2010.

[4] J. Dennis, J. Edwards, K. Evans, O. Guba, A. Mirin, M. Taylor, and
P. Worley. Cam-se: A scalable spectral element dynamical core for the
community atmosphere model. In The International Journal of High
Performance Computing Applications, pages 26, 74-89, 2012.

[5] S. Gulwani. Automating string processing in spreadsheets using input-
output examples. In POPL, pages 317-330, 2011.

[6] S. Gulwani, W. Harris, and R. Singh. Spreadsheet data manipulation
using examples. CACM, 55(8):97-105, Aug. 2012.

[7] P. Hawkins, A. Aiken, K. Fisher, M. Rinard, and M. Sagiv. Concurrent
data representation synthesis. In PLDI, pages 417-428, 2012.

[8] S. Kulkarni and J. Cavazos. Mitigating the compiler optimization
phase-ordering problem using machine learning. In OOPSLA, pages
147-162, 2012.

[9] C. Lengauer. Loop parallelization in the polytope model. In Pro-
ceedings of the 4th International Conference on Concurrency Theory,
pages 398416, 1993.

[10] T. Mytkowicz, A. Diwan, and E. Bradley. Computer systems are
dynamical systems. In CHAOS, 20009.

[11] K. Naono, K. Teranishi, J. Cavazos, R. Suda, and Editors. Chapter 1.
In Software Automatic Tuning, pages 3-3, 2010.

[12] C. Olschanowsky, M. Strout, S. Guzik, J. Loffeld, and J. Hittinger.
A study on balancing parallelism, data locality, and recomputation in
existing pde solvers. In SCI4, pages 793-804, 2014.

[13] R. Pincus and B. Stevens. Paths to accuracy for radiation parameteri-
zations in atmospheric models. In J. Adv. Model. Earth Syst., pages 5,
225-233, 2013.

[14] L. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
P. Sadayappan, and N. Vasilache. Loop transformations: convexity,
pruning and optimization. In POPL 2011, pages 549-562, 2011.

[15] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superoptimization.
In ASPLOS, pages 305-316, 2013.

[16] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat.
Combinatorial sketching for finite programs. In ASPLOS, pages 404—
415, 2006.

[17] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik, V. Saraswat, and
S. Seshia. Sketching stencils. In PLDI, pages 167-178, 2007.

[18] A. Solar-Lezama, C. Jones, and R. Bodik. Sketching concurrent data
structures. In PLDI, pages 136-148, 2008.

[19] R. Suda. Chapter 16: A bayesian method of online automatic tuning.
In Software Automatic Tuning, pages 275-293, 2010.

[20] M. Vechev and E. Yahav. Deriving linearizable fine-grained concur-
rent objects. In PLDI, pages 125-135, 2008.

[21] M. Vecheyv, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of
synchronization. In POPL, pages 327-338, 2010.

[22] R. Whaley and A. Petitet. Minimizing development and maintenance
costs in supporting persistently optimized BLAS. In Software: Prac-
tice and Experience, volume 35, pages 101-121, February 2005.

